electric heating systems
electric heating systems
Index

Introduction ... 7
1. Room Heating .. 12
 1.1 General Information ... 12
 1.1.1 Thermal Comfort .. 12
 1.1.2 Health and Safety ... 13
2. Underfloor Heating .. 14
 2.1 General Information ... 14
 2.1.1 Thermal Insulation .. 14
 2.1.2 Floor Coverings .. 15
 2.1.3 Concrete Slab (screed) ... 15
 2.1.4 Floor Temperature .. 15
 2.1.5 Designing a Floor Heating System ... 16
 2.2 In-Screed Floor Heating ... 17
 2.2.1 ELEKTRA VC/VCD Heating Cables ... 17
 2.2.2 Planning ... 18
 2.2.3 Installation ... 20
 2.3 Suspended Wooden Floors .. 24
 2.4 Storage Heating ... 25
 2.4.1 Calculating Heating Power .. 25
 2.4.2 Calculating Screed Thickness ... 26
 2.5 Direct Acting Floor Heating in Adhesive or Self-levelling Slab .. 29
 2.5.1 ELEKTRA MG/MD Heating Mats .. 29
 2.5.1.1 Planning ... 30
 2.5.1.2 Installation .. 32
 2.5.2 ELEKTRA DM/UltraTec Heating Cables ... 35
 2.5.3 Wiring Details .. 37
 2.6 Under-laminate Floor Heating – Dry Installation .. 38
 2.6.1 ELEKTRA WoodTec™ Heating Mats ... 38
 2.6.2 Planning ... 40
 2.6.3 Underlay ... 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.4 Installation</td>
<td>41</td>
</tr>
<tr>
<td>2.6.5 Connection To Mains</td>
<td>42</td>
</tr>
<tr>
<td>3. Wall Heating</td>
<td>43</td>
</tr>
<tr>
<td>3.1 General Information</td>
<td>43</td>
</tr>
<tr>
<td>3.1.1 Designing Wall Heating Systems</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2 Installation</td>
<td>43</td>
</tr>
<tr>
<td>3.2 Drying Out Wall Surfaces</td>
<td>44</td>
</tr>
<tr>
<td>4. Temperature Control</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Temperature Controller Placement</td>
<td>46</td>
</tr>
<tr>
<td>4.2 Installation</td>
<td>46</td>
</tr>
<tr>
<td>4.3 Temperature Controllers</td>
<td>48</td>
</tr>
<tr>
<td>5. Product Selection Guide</td>
<td>51</td>
</tr>
<tr>
<td>6. Snow and Ice Protection</td>
<td>53</td>
</tr>
<tr>
<td>6.1 Outdoor Surfaces</td>
<td>53</td>
</tr>
<tr>
<td>6.1.1 Installation</td>
<td>54</td>
</tr>
<tr>
<td>6.1.2 Loading Bays and Driveways</td>
<td>57</td>
</tr>
<tr>
<td>6.1.3 Car Parks</td>
<td>60</td>
</tr>
<tr>
<td>6.1.4 Stairs</td>
<td>63</td>
</tr>
<tr>
<td>6.2 Roofs and Gutters</td>
<td>66</td>
</tr>
<tr>
<td>6.3 Control</td>
<td>72</td>
</tr>
<tr>
<td>6.3.1 Traffic Routes and Areas</td>
<td>72</td>
</tr>
<tr>
<td>6.3.2 Roofs and Gutters</td>
<td>73</td>
</tr>
<tr>
<td>6.3.3 Controllers Configuration</td>
<td>73</td>
</tr>
<tr>
<td>6.4 Product Selection Guide</td>
<td>75</td>
</tr>
<tr>
<td>7. Pipe and Pipeline Heating</td>
<td>76</td>
</tr>
<tr>
<td>7.1 General Information</td>
<td>76</td>
</tr>
<tr>
<td>7.2 Heating Cable Selection</td>
<td>77</td>
</tr>
<tr>
<td>7.3 Planning</td>
<td>80</td>
</tr>
<tr>
<td>7.4 Project Data Form</td>
<td>84</td>
</tr>
<tr>
<td>7.5 Installation</td>
<td>85</td>
</tr>
<tr>
<td>7.6 Control</td>
<td>91</td>
</tr>
<tr>
<td>7.7 Product Selection Guide</td>
<td>93</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>8.</td>
<td>Special Frost Protection Systems</td>
</tr>
<tr>
<td>8.1</td>
<td>Ground and Foundation Protection for Cold Stores</td>
</tr>
<tr>
<td>8.2</td>
<td>Pouring Concrete</td>
</tr>
<tr>
<td>8.3</td>
<td>Portable Heating Mats</td>
</tr>
<tr>
<td>8.4</td>
<td>Industrial Tanks</td>
</tr>
<tr>
<td>8.5</td>
<td>Aerial Masts</td>
</tr>
<tr>
<td>8.6</td>
<td>Control</td>
</tr>
<tr>
<td>8.7</td>
<td>Product Selection Guide</td>
</tr>
<tr>
<td>9.</td>
<td>Agricultural Heating Systems</td>
</tr>
<tr>
<td>9.1</td>
<td>Pigsties and Cowsheds</td>
</tr>
<tr>
<td>9.2</td>
<td>Plant Propagation</td>
</tr>
<tr>
<td>9.3</td>
<td>Product Selection Guide</td>
</tr>
<tr>
<td>10.</td>
<td>Sports Fields</td>
</tr>
<tr>
<td>11.</td>
<td>Product Catalogue</td>
</tr>
</tbody>
</table>
ELEKTRA
Leading Brand

ELEKTRA specializes in electric heating systems for both residential and commercial buildings. Established in 1985, the company is currently the largest and most reputable producer of floor heating systems in Central Europe. From the beginning product quality has been the first priority for the company. This is the only way to satisfy all customers and achieve and maintain leadership in the market.

ELEKTRA
Stock Availability

Throughout the EU and around the world, ELEKTRA products are readily available through a network of approved and authorized distributors, installers and even dedicated websites.
The heightened mechanical durability and flexibility of ELEKTRA heating cables is achieved through the use of multi-stranded wire construction of the cores.

Know-how & Experience

Many years of continuous operation combined with the latest technology ensures the expert ELEKTRA engineers constantly develop new and innovative solutions. ELEKTRA products remain at the forefront, providing the highest level of quality and customer satisfaction.

Raw Material Control

The rigorous selection, approval and use of an established and qualitative raw material supply chain including: Isabellenhütte, Sandvik, 3M & Borealis, ensures the quality and integrity of ELEKTRA products.

Multi-wire Construction

The heightened mechanical durability and flexibility of ELEKTRA heating cables is achieved through the use of multi-stranded wire construction of the cores.

Dual Heating Cores

Both cores are heating, allowing equal power distribution of 50% to each core. This significantly lowers the actual operating temperatures of the heating cores which prolongs the life span of the products.
Precise parameter settings are achieved with computer controlled extrusion processes, ensuring correct structure and necessary quality of the extruded insulation and outer sheath.

Double-layer Insulation

The use of double-layer insulation in products especially designed for extremely demanding operating conditions ensures superior thermal and electric features, thus significantly enhancing durability of the products.

Laser Measurement

Laser measurement equipment in extrusion lines guarantees insulation and outer sheath thickness to within a tolerance of 0.05mm, and maintains uniform cable centricity.
Uniformity of Resistance

The necessary maintenance of uniform cable tension and therefore stability of resistance is achieved through the use of modern production machines at each stage of the production process. This uniformity and stability is confirmed with 6 individual measurements of heating wire resistance during production.

Faultless Joint

Only modern precision calibrated pneumatic devices guaranteeing adequate uniform force of joint clamping are used. The material and construction of joints to the level of IPX7 minimum, guarantees the protection of connections in products.

High Voltage Control

Production defects are wholly eliminated by rigorous high voltage control monitoring in the production line, and an additional final high voltage test of every single product, not random testing.
The marking of each product with a unique production code, means the history of the entire production process and materials used in manufacture can be traced.

Quality Confirmed

ELEKTRA quality confirmed by the research results and certificates of VDE and EAC, as well as certificates issued by, among others, UL (Underwriters Laboratories), ETL, Predom OBR, BBJ, Bureau Veritas and PZH.
1. Room Heating

1.1 General Information

Heating systems can operate on the physical process of convection or alternatively apply the principles of thermal radiation.

Radiation heating
– thermal radiation directly heats up objects located within its reach (walls, furniture, home appliances, etc.), is transferred via the air (the air not being part of the physical process and not heating up).

The air then increases its temperature indirectly, coming into contact with surfaces previously heated with radiation. In rooms heated with radiation air temperature is lower from the average radiation temperature of all surfaces, thus creating the perception of thermal comfort.

Humans generally feel more comfortable in rooms of warmer building components and cooler air – rather than opposite.

Convection heating
– radiators heat up the air which then increases its temperature and lifts, later cools down and drops. The process of air circulation repeats until the air temperature achieves one level. Radiators warm up the air in the first place, and the temperature of the building components (walls, floor, ceiling) is lower, especially for external walls.

In surface heating – floor, wall and ceiling heating – heat transfer occurs mostly through radiation.

In traditional heating applying conventional radiators, heat transfer occurs mostly via convection.

1.1.1 Thermal Comfort

One of the most crucial aspects of the comfort of room use is thermal comfort. This is a state in which users feel that their organisms are in the condition of even thermal balance, i.e. they do not feel excessive heat or cold. Thermal balance is influenced by the heat generated by human bodies when physically active or wearing clothes, as well as the parameters of the environment:

- air temperature,
- the temperature of the surfaces of building components,
- air flow velocity,
- air humidity.

The total of external parameters influences the thermal perception of humans. Their average value constitutes ambient temperature as felt by humans. The relationships can be viewed in the following chart.

Relatively low air temperatures are compensated by thermal radiation of building components (walls, floors, ceiling), thus ensuring required thermal comfort. Lowering room temperature with 1-2°C for underfloor heating, and 3-4°C for wall heating respectively, allows maintaining thermal comfort with simultaneous drop in energy costs:

- for underfloor heating: 4-8%,
- or wall heating: 12-16%.

![Thermal Comfort Chart](chart.png)
Vertical distribution of room temperature also influences the perception of thermal comfort.

Vertical temperature distribution for underfloor heating most closely follows the ideal profile.

Ideal conditions of thermal comfort can only be provided by heating systems which heat up rooms through thermal radiation, not convection (meaning the air flow).

1.1.2 Health and Hygienic Conditions

Air ionisation
Air with the excess of negatively charged ions positively influences well-being of living organisms, also generating the much-desired feeling of freshness. For conventional radiator heating, the amount of positively charged ions increases, negatively influencing our health and well-being. Pumping air through metal ventilation ducts and heating coils causes reduction of negatively charged ions proportionally to the air flow velocity.

Surface heating does not cause any disturbances in ionic balance in the room air.

Allergies
For room air temperature above 23-24°C the risk of irritation of mucous membranes increases. There is a confirmed relationship between increased indoor air temperature and the occurrences of the so called Sick Building Syndrome. Surface heating allows decreasing the room temperature still maintaining thermal comfort.

Dry distillation of dust particles
The process of decomposition of organic dust particles via their scorching (the so called dry distillation of dust) occurs in temperatures above 60°C – and this is the temperature level of conventional on-wall radiators. Surface heating is a low temperature heating (24-28°C), where the entire floor, wall or ceiling surface is the heater.

Air flow – draughts
In convection heating, dust and allergens are carried with the air around rooms. In surface heating there is no air circulation, therefore the dust is not dispersed into the air.

Air humidity
Optimal level of air humidity should amount to 40-60%, still heating systems usually decrease it down to approx. 30%. Dry air causes drying up of mucous membranes and dry cough. This is particularly troublesome for people with allergic tendencies. Surface heating creates beneficial microclimate – not drying up the air.

Low temperature surface heating is the most healthy type of the heating system, especially recommended for allergy sufferers.
2. Underfloor Heating

2.1 General Information

Electric underfloor heating is a low temperature surface heating, and besides featuring all the advantages of such a heating, can also be characterised with:

- low investment costs,
- retaining room aesthetics
 – not introducing any disturbing foreign elements, such as visible radiators,
- no requirement of providing a separate boiler room and flue gas ducts,
- possibility of warming up selected rooms in intermediate heating periods, with no requirement to start up the entire heating system,
- reliability and high durability,
- simplicity of operation and maintenance,
- prevention of environmental pollution.

2.1.1 Thermal Insulation

Floor heating is a radiant form of heating, with the whole floor surface acting like a heater. The effectiveness of the heating depends, to a high degree, on the quality of the floor's thermal insulation. This especially relates to ground floor areas and rooms with unheated basements below. The quantity of heat which will be retained in the heated room depends on the quality & thickness of insulation.

The thickness of the floor insulation on the upper levels of a building is less important than the ground floor insulation (see the adjacent chart).

Good thermal insulation of the floor, walls, roofs, and windows will decrease the demand for heat and reduces the running costs of the heating system.

Efficiency of electric floor heating for different thickness of insulation
(floor directly at ground)

Efficiency of electric floor heating for different thicknesses of insulation
(floor structure between levels)
2.1.2 Floor Coverings
Floor heating requires coverings with a thermal resistance below 0.15 m²K/W.

Suitable floor finishes, which can be used with floor heating systems include:
- Ceramic tiles and stone floors
- Carpet
- Vinyl
- Parquet and other wooden flooring (the moisture content should be below 9%)

Carpet and Vinyl should be certificated and marked:

Approximate thermal properties of exemplary floor finish materials:

<table>
<thead>
<tr>
<th>Floor Finish</th>
<th>Thickness [mm]</th>
<th>Thermal Conductivity [W/mK]</th>
<th>Thermal Resistance [m²K/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic tile</td>
<td>9.0</td>
<td>1.050</td>
<td>0.009</td>
</tr>
<tr>
<td>Marble</td>
<td>25.0</td>
<td>2.150</td>
<td>0.012</td>
</tr>
<tr>
<td>Carpet</td>
<td>7.0</td>
<td>0.090</td>
<td>0.150</td>
</tr>
<tr>
<td>Linoleum</td>
<td>2.5</td>
<td>0.170</td>
<td>0.015</td>
</tr>
<tr>
<td>Vinyl floor tile</td>
<td>2.0</td>
<td>0.200</td>
<td>0.010</td>
</tr>
<tr>
<td>Vinyl floor tile on felt</td>
<td>5.0</td>
<td>0.070</td>
<td>0.086</td>
</tr>
<tr>
<td>Vinyl floor tile on cork</td>
<td>5.0</td>
<td>0.070</td>
<td>0.071</td>
</tr>
<tr>
<td>Oak-wood parquet</td>
<td>25.0</td>
<td>0.220</td>
<td>0.114</td>
</tr>
<tr>
<td>Cork parquet</td>
<td>11.0</td>
<td>0.090</td>
<td>0.122</td>
</tr>
<tr>
<td>Laminate floor</td>
<td>8.0</td>
<td>0.114</td>
<td>0.070</td>
</tr>
</tbody>
</table>

*) Heat resistance for laminate floors is calculated by adding the heat resistance for the laminate flooring and the insulating underlay.

2.1.3 Concrete Slab (screed)
In floor heating, two types of floor coverings can be used:
- Anhydrite coverings have short drying time (approx. 7 days) and have small linear shrinking. This method allows the execution of jointless large areas (up to 300m²). Thanks to the low porosity, this covering has got high heat transfer properties, and therefore features shorter floor warm-up time than regular cement slab.
- Cement coverings have high temperature and humidity resistance. Due to a large linear shrinking factor, for surfaces over 30m² with the length of one side over 6m, it is necessary to incorporate expansion joints. The approximate setting time: 28 days.

The coverings should be separated from side walls by expansion tape. To avoid heat loss to the base or outer walls, screeds used for heated floors can not be directly connected to the base or walls (floating floor).

2.1.4 Floor Temperature
The recommended temperature of the floor is 26°C. Higher temperatures could cause conditions that would bring discomfort. For bathrooms and areas with a lot of glazing, such as conservatories, winter gardens & shop fronts, a higher temperature is recommended (approx. 29-30°C).

<table>
<thead>
<tr>
<th>Technical parameters</th>
<th>Anhydrite slab covering</th>
<th>Cement slab covering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab’s thickness</td>
<td>35 - 60 mm</td>
<td>50 - 80 mm</td>
</tr>
<tr>
<td>Heat transfer coefficient</td>
<td>2.0 W/m²K</td>
<td>1.0 - 1.1 W/m²K</td>
</tr>
<tr>
<td>Dry-out time</td>
<td>7 days</td>
<td>28 days</td>
</tr>
<tr>
<td>Max jointless area</td>
<td>300 m²</td>
<td>30 m²</td>
</tr>
<tr>
<td>Porosity</td>
<td>8%</td>
<td>15 - 20%</td>
</tr>
</tbody>
</table>
2.1.5 Designing a Floor Heating System

Electric floor heating is basically used to obtain warm floors. In energy-efficient houses, where the seasonal heat load is

\[E_a < 70 \text{ kWh} / \text{m}^2 \text{ year} \]

floor heating can be efficiently applied as primary heating. The lower the \(E_a \), the more economical floor heating costs in comparison with costs associated with other types of heating systems.

In heating systems designed to obtain warm floors, it is recommended to apply temperature controllers measuring floor temperature. For floor heating systems used as primary heating, temperature controllers should be applied measuring air temperature in rooms.

Heating cable's heat output [W/m]
Amount of heat, expressed in Watts, emitted by 1m of heating cable.

Heating mat's heat output [W/m²]
Amount of heat, expressed in Watts, emitted by a heating cable installed on the heating mat's surface area of 1m².

Heat output [W/m²]
Amount of heat, expressed in Watts, for every 1m² of the room's surface area, to balance heat losses and heat up the room to the required temperature.

Warm floor
Warm floor influences the heat comfort of rooms, and its temperature depends on personal preferences of users.

Floor heating used to obtain warm floors that also requires primary heating, it only acts as supplementary heating. Warm floors can be obtained by installing heating mats or cables directly under floor in the layer of adhesive or self-levelling screed/compound, on which ceramic tiles are then laid, stone, PVC or wood flooring glued to the floor.

Laminate flooring or engineered wood flooring can be warmed up with heating mats designed for dry installation, laid on the insulation layer.

Controllers equipped with floor temperature sensors allow to maintain floor temperature required by users, continuously or only during determined time periods.

Heat output required to obtain warm floors depends on:
- type of the flooring,
- method of temperature control.

Wood, laminate or PVC flooring allow heat output not exceeding 100W/m², such restriction does not apply to ceramic or stone flooring.

If possible, it is recommended to use programmable temperature controllers with temperature setback during determined time periods, as well as for cases when the heating is not continuously on, e.g. in hotel rooms or offices.

Higher heat output of heating mats or smaller spacing of heating cables will shorten the time required to achieve warm floor after temperature setback periods.

Application of higher heat output does not influence energy consumption, still it speeds up obtaining set floor temperature.

In transition periods of autumn and spring, when the primary heating system is not on yet, floor heating normally dedicated to obtain warm floors can be easily used to heat entire rooms.
2.2 In-Screed Floor Heating
This type of heating is installed in rooms which are under construction and floors are not finished yet. It generally serves as primary heating and is the only source of heat in rooms.

2.2.1 ELEKTRA VC/VCD Heating Cables
With sand/cement or anhydrite screed floors, ELEKTRA VC or VCD heating cables are used.

ELEKTRA VC heating cables are one-core with a 2.5m (“cold tail”) power lead at both ends.

ELEKTRA VCD heating cables are double-core with a 2.5m (“cold tail”) power lead at one end and a joint at the other.

ELEKTRA VCD heating cable structure
- PET covered aluminum foil shield
- Tinned cooper braiding
- Heat resistant PVC outer sheath
- Multi-wire heating core
- XLPE insulation

ELEKTRA VC heating cable structure
- Heat resistant PVC outer sheath
- Tinned cooper braiding
- PET covered aluminum foil shield
- Multi-wire heating core
- XLPE insulation
2.2.2 Planning
When starting to plan floor heating, it is necessary to:
• assess the design heat load of the building
• assess the type of the flooring
• assess the heating cable’s unit heat output for the given type of flooring

In order to calculate the required heating cable’s spacing, draw the planned layout of the heating cable or apply the following formula:

\[a-a = \frac{S}{L + 0.5P} \]

where:
- \(a-a \) – spacing between cables
- \(S \) – floor surface area for the floor heated with the heating cable
- \(L \) – heating cable’s length
- \(P \) – floor surface perimeter for the floor heated with the heating cable

To determine spacing between heating cables, only take into consideration space free from fixed furnishing such as furniture without support, bathtubs, toilets, etc.

Selection of ELEKTRA VCD heating cables.
Design heat load of 100m² the building: 3630W (Example value). Total heat output of the heating cables to install (after taking into consideration safety factor 30%):

\[3630W \times 1.3 = 4719W \]

Average unit heat load:

\[\frac{4719W}{100m^2} = 47.19W/m^2 \]

assumed for further calculations: 47W/m²

Bedroom: 16m²
Heat load:

\[47W/m^2 \times 16m^2 = 752W \]

For carpet flooring in the current example, 10W/m heating cables are recommended. The heating cable of the close heat output is ELEKTRA VCD 10/910, 92m long. Cable spacing:

\[a-a = \frac{6.5m^2}{57m + 5.7m} = 0.10m = 10cm \]

Bedroom: 28m²
Heat load: 47W/m² x 28m² = 1316W
For ceramic tiles flooring in the current example, no restrictions on the heating cable’s unit heat output are applied. The heating cables of the heat output close to 1316W is ELEKTRA VCD 10/1450, 144m long, or ELEKTRA VCD 17/1430, 85m long. Selection should then be made basing on more optimal cable spacing values. For ELEKTRA VCD 10/1450, 144m long, the cable spacing would be 15cm, whereas for ELEKTRA VCD 17/1430, 85m long, the cable spacing would be 24cm. Cable spacing should not exceed 20cm, to prevent creating under-heated areas (cold spots) – therefore the cable ELEKTRA VCD 10/1450 has been chosen.

Bathroom: 9m²
Heat load: 47W/m² x 9m² = 423W
For wooden flooring in the current example, 15, 17, 20W/m² heating cables are recommended. The heating cable of the close heat output is ELEKTRA VCD 10/910, 92m long. Cable spacing:

\[a-a = \frac{6.5m^2}{57m + 5.7m} = 0.10m = 10cm \]
Selection of ELEKTRA VCD heating cables

<table>
<thead>
<tr>
<th>Living Space</th>
<th>Fixing</th>
<th>Total Space</th>
<th>Unfurnished Heated Space</th>
<th>Half of the perimeter, for the area heated</th>
<th>Required Power</th>
<th>ELEKTRA VCD Heating Cable</th>
<th>Fixed Power</th>
<th>Cable Length</th>
<th>Cable spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[m²]</td>
<td>[m²]</td>
<td>[m]</td>
<td>[W]</td>
<td></td>
<td>[W]</td>
<td>[m]</td>
<td>[mm]</td>
</tr>
<tr>
<td>Bedroom I</td>
<td>Carpet</td>
<td>16.0</td>
<td>12.5</td>
<td>7.8</td>
<td>752</td>
<td>10/910</td>
<td>910</td>
<td>92.0</td>
<td>130</td>
</tr>
<tr>
<td>Bedroom II</td>
<td>Carpet</td>
<td>14.0</td>
<td>11.5</td>
<td>7.0</td>
<td>688</td>
<td>10/700</td>
<td>700</td>
<td>70.0</td>
<td>150</td>
</tr>
<tr>
<td>Living room</td>
<td>Tiles</td>
<td>28.0</td>
<td>23.0</td>
<td>11.0</td>
<td>1316</td>
<td>10/1450</td>
<td>1450</td>
<td>144.0</td>
<td>150</td>
</tr>
<tr>
<td>Kitchen</td>
<td>Tiles</td>
<td>14.0</td>
<td>10.0</td>
<td>6.5</td>
<td>658</td>
<td>10/700</td>
<td>700</td>
<td>70.0</td>
<td>130</td>
</tr>
<tr>
<td>Hall</td>
<td>Tiles</td>
<td>11.0</td>
<td>10.0</td>
<td>6.5</td>
<td>517</td>
<td>10/570</td>
<td>570</td>
<td>57.0</td>
<td>150</td>
</tr>
<tr>
<td>Bath</td>
<td>Tiles</td>
<td>9.0</td>
<td>6.5</td>
<td>5.7</td>
<td>423</td>
<td>10/570</td>
<td>570</td>
<td>57.0</td>
<td>100</td>
</tr>
<tr>
<td>Toilet</td>
<td>Tiles</td>
<td>3.0</td>
<td>2.0</td>
<td>3.4</td>
<td>141</td>
<td>10/170</td>
<td>170</td>
<td>16.5</td>
<td>100</td>
</tr>
<tr>
<td>Lobby</td>
<td>Tiles</td>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td>235</td>
<td>10/265</td>
<td>265</td>
<td>27.0</td>
<td>100</td>
</tr>
</tbody>
</table>

Installation example of heating cables

- **Bedroom I**: VCD 10/910, a-a = 130mm
- **Bedroom II**: VCD 10/700, a-a = 150mm
- **Hall**: VCD 10/700, a-a = 150mm
- **Living room**: VCD 10/1450, a-a = 130mm
- **Kitchen**: VCD 10/700, a-a = 130mm
- **Bath**: VCD 10/570, a-a = 150mm
- **Toilet**: VCD 10/170, a-a = 100mm
- **Lobby**: VCD 10/265, a-a = 100mm
2.2.3 Installation

Materials required for installing floor heating systems:

- Thermal insulation
 for floor insulation applications
 – foamed polystyrene boards
 with compressive stress level at
 10% relative deformation lower
 than 60 kPa (EN 13163)
 – hard mineral wool boards
 with 120÷180 kg/m³ density
 (compressibility level CP2≤2mm
 for utility load on levelling layer
 ≤5 kPa EN 12431)

- PE foil

- An ELEKTRA TME
 installation tape

- A steel wire mesh
 for separating the heating
 cable from the surface of
 the insulation,
 e.g., a wire mesh
 with diameter of 2mm and
 a mesh area of max. 50x50mm
 (an alternative
 for the installation tape)

- A band clip or
 soft binding wire for fixing
 heating cables on
 the metal net

- ELEKTRA heating cables

- An ELEKTRA temperature
 controller

- A conduit for the temperature
 sensor
The following layers are placed one on top of the other at an even ceiling or cement base:

- PE foil (only for cement base)
- Thermal insulation
- Damp proof membrane
- Steel wire mesh

According to project specifications which were made before, heating cables are fixed to steel netting by means of band clips or soft binding wire.

If the insulation is foil backed or is covered with a thin layer of screed, an ELEKTRA TME installation tape can be used. After the heating cables have been arranged, a floor temperature sensor should be installed and the completed surface should be covered with sand/cement screed (min. 50mm) or with self-levelling cement.

Please note that both the beginning and the end of the heating cable (black joint), as well as the heating cable itself, should be completely covered with screed.
Installation of ELEKTRA VCD heating cable by using ELEKTRA TME installation tape

Cross section of the floor with ELEKTRA TME installation tape

- Floor temperature sensor in protective tube
- Tile adhesive (flexible)
- Sand/cement or self-levelling screed
- ELEKTRA heating cable
- ELEKTRA TME installation tape
- Damp proof membrane (ground floors only)
- Concrete floor or ceiling
- Thermal insulation
- Initial screed layer / foil backing
- Damp proof membrane

Damp proof membrane (ground floors only)
Heating Cable Connection
Connecting the heating cables to the electrical installation system should be via a temperature controller (see section 4.1).

The temperature controller should be installed in an installation box. Within this box, the following should be led into it:

- Power supply cable (230V)
- "Cold" supply cable of the heating cable
- Temperature sensor cable

The floor temperature sensor should be in a plugged flexible conduit. The flexible conduit should not be bent at an extreme angle but rather in a gentle bow like shape. The proper placement for the installation box is dependant on aesthetic and practical reasons. The heating cables should be installed so that the 2.5m cold cable is able to be connected to the controller.

Connection diagram for ELEKTRA VC/VCD heating cables
2.3 Suspended Wooden Floors

Electric floor heating requires the wooden floor to have a thermal resistance no higher than 0.15 m²K/W. To fulfill this condition, the thickness of the wooden floor should not exceed values given in the table below.

To calculate the necessary heat required, see section 2.1.5. The installed power capacity should not exceed 90 W/m² whilst the power rating of the heating cable should not exceed 10 W/m. Heating cables should not be installed directly on the thermal insulation and on wooden parts of the floor construction. It should be on top of the metal wire mesh, which is fixed to the sides of the joists. Where heating cables have the pass through joists, the joist should be notched and insulated with aluminium metal plates.

<table>
<thead>
<tr>
<th>Density [kg/m³]</th>
<th>Thermal Conductivity [W/mK]</th>
<th>Max. Thickness of Floor [mm]</th>
<th>Heat Resistance [m²K/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pine-boards</td>
<td>550</td>
<td>0.16</td>
<td>24</td>
</tr>
<tr>
<td>Spruce-boards</td>
<td>550</td>
<td>0.16</td>
<td>24</td>
</tr>
<tr>
<td>Oak-boards</td>
<td>800</td>
<td>0.22</td>
<td>32</td>
</tr>
</tbody>
</table>
2.4 Storage Heating

A storage heating system is based on electrical power that is available during low tariff periods, often occurring during night hours. The use of this power is less expensive, and therefore decreases the electric operating costs. In the period of time when this electricity is available, a concrete floor has the ability to accumulate and retain heat. Storage floor heating requires a solid floor construction (with a thickness of approximately 70-150 mm) and is most often applied in ground floors.

1.4.1 Calculating Heating Power

The formula to calculate the heat loss can be found on page 2.1.5. The duration of the low tariff lasts an average of 10 hours (ranging from 1:00 pm to 3:00 pm and then from 10:00 pm to 6:00 am) within the 24 hour day cycle. The heat accumulated in the floor during this time is sufficient enough to heat a room for the other 14 hours of the day. The total heat accumulation system can be calculated with the following formula:

\[\phi \times 24 \times 1.20 / \theta \]

Where
\[\phi = \text{heat loss [W]}, \]
\[\theta = \text{the duration of the II tariff [h]}, \]
and
\[1.2 = \text{a security factor}. \]

If the result of the calculation surpasses 175W/m², a secondary source of heat is required.
2.4.2 Calculating Screed Thickness

The thickness of the concrete slab is dependant on:

- Unit surface heat losses of the building [W/m²]
- The duration of the low tariff (in the afternoon)
- The type of floor finish
- The strength of the building construction

The specifications on which concrete plate thickness to use can be found in the nomogram below.

Building Construction

<table>
<thead>
<tr>
<th>Unit Weight [kg/m³]</th>
<th>Construction Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light below 400</td>
<td>wood</td>
</tr>
<tr>
<td>Strong 400 - 1200</td>
<td>hollow brick, Ytong</td>
</tr>
<tr>
<td>Very strong above 1200</td>
<td>concrete, solid brick</td>
</tr>
</tbody>
</table>

Nomogram acc. to DIN 44576 / part 4

- **Duration of afternoon period of low tariff**
 - 2h
 - 3h
 - 4h
 - ≥5h

- **Type of the floor**
 - Wood, PVC with felt insulation, Stone floor covered in half with carpet
 - Carpet
 - PVC
 - Natural stone

- **Heat loss [W/m²]**
 - 36

- **Concrete thickness [mm]**
 - 60
 - 70
 - 80
 - 90
 - 100
 - 110
 - 120
 - 130
 - 140

- **Building construction**
 - Light
 - Very Strong
 - Strong
Example
(Building as described in section 2.2.2)

Data:
Thermal power demand \(\phi = 3630W \)
Total area of building \(A = 100m^2 \)
Duration of off peak tariff 10 hours, including two hours in the afternoon hours
Construction of building strong

Total power of storage system amounts to:
\[3630W \times 24 \times 1.20 / 10 = 10454W (10.45kW) \]

Unit heat power demand amounts to:
\[10454W / 100m^2 = 104W/m^2 \]

Calculation of screed thickness:
Heat losses at 1m² of building surface \(3630W / 100m^2 = 36W \)
Duration of off peak tariff 10 hours
Type of floor floor tiles
Construction of building strong

Using the given nomogram, the thickness of the screed should be 90mm. This example is shown with the broken line.

Selection of heating cables:
The 28m² Living Room
Heat power demand: \(104W/m^2 \times 28m^2 = 2912W \)
We selected ELEKTRA VCD17, of which the total heating power is just under the required level. The heating cable ELEKTRA VCD 17/2950 has a total length of 172m and a power output of 2950W.
The spacing for the heating cables
\[a-a = \frac{5}{L+0.5P} = \frac{28m^2}{172m+11m} = 153mm \]

The 16m² Bedroom
Heat power demand: \(104W/m^2 \times 16m^2 = 1664W \)
We selected the heating cable ELEKTRA VCD 17/1590 with a length 93m.
The spacing for the heating cables
\[a-a = \frac{14.50m^2}{93m+7.8m} = 144mm \]
Control
To control storage heating systems, central controllers with charging controllers can be applied, according to the diagram below. A central controller will register average outdoor temperatures and tendencies in temperature change with a weather sensor. Additionally, it will recognize periods of low tariff, basing on signals sent by e.g. a clock or an electric energy supplier.

The central controller receives a signal confirming low tariff is available and using the measurements of external temperature, the forecast of temperature change and information on stored heat, from the day before. It will power the heating cable for the required time to provide sufficient stored heat, using the low tariff period.

The solution suggested below is just an example (illustration) of a technical solution for the complex control of storage electric floor heating systems. Detailed features of the final solution for such a control system should be discussed with the system's designer or installer.

Such control can be also realized with the following controllers: ELEKTRA ETN-1999, ELEKTRA OCD5, ELEKTRA TDR 4020-PRO.

The charging controller is equipped with a residual heat sensor that records the floor temperature.

The typical wiring diagram for storage heating controls shows the connection of various components such as central controller, charging controller, weather sensor, residual heat sensor, main contactor, contactors, low tariff timer or availability signal, and low tariff timer or availability signal.
2.5 Direct Acting Floor Heating in Adhesive or Self-levelling Slab

If ELEKTRA VC/VCD heating cable installation is not possible due to construction restrictions (e.g. floor levels must not be raised), as well as for renovation of old floors, ELEKTRA DM/UltraTec heating cables or ELEKTRA MG/MD heating mats can be used instead. These mats or heating cables are installed in a layer of adhesive or self-levelling screed/compound directly under the floor.

They are normally used to maintain comfort floor temperature. They can also be used as a primary heating system. Heating mats and cables can be installed on concrete floors, self-levelling slab, old floor tiles, terrazzo or damp proof chipboards.

For surfaces that are large in size or irregularly shaped, it is recommended that ELEKTRA DM/UltraTec heating cables are used.

2.5.1 ELEKTRA Heating Mats

A heating mat consists of a thin heating cable that is stitched to a self-adhesive glass fibre mesh. The mat is 500 mm wide and ends in a 4 m ‘cold tail’ supply cable.

ELEKTRA MG heating mats are approximately 3 mm thick and have ‘cold tail’ supply cables at both ends. ELEKTRA MD heating mats are approximately 3.9 mm thick. One side ends with a ‘cold tail’ supply cable and the other with a joint.

The single-sided ELEKTRA MD mats are easier to install, due to the single supply cable.

The installation of the double-sided MG mats is more complicated because both ‘cold tail’ supply cables must be connected to the tempera-
ture controller. Due to the miniscule thickness, they are commonly used in places where the floor cannot be upraised too much.

Heating mat power ratings:

MG - 100W/m² and 160W/m²
MD - 100W/m² and 160W/m²
MD - 200W/m² (applicable in the UK only, e.g. in conservatories)

Mats with a power rating of 160W/m² (or more) can only be installed under floor tiles.

Heating mats with a power rating of 100W/m² can be installed under any type of floor.

Selecting the proper type of mat is dependant on the type of heating system and the size of the unfurnished surface/heating surface.

Selection of heating mat:

<table>
<thead>
<tr>
<th>Function of the Heating System</th>
<th>Kitchen / Bathroom</th>
<th>Other rooms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heating Surface < 3/4 of Total Surface area</td>
<td>Heating Surface > 3/4 of Total Surface area</td>
</tr>
<tr>
<td>Primary Heating</td>
<td>160</td>
<td>100</td>
</tr>
<tr>
<td>Warm Floor</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELEKTRA heating cable</th>
<th>XLPE outer sheath</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLPE second insulation layer</td>
<td>tinned copper braiding</td>
</tr>
<tr>
<td>FEP first insulation layer</td>
<td>multi-wire heating core</td>
</tr>
<tr>
<td>Construction of the ELEKTRA MD heating mat</td>
<td></td>
</tr>
</tbody>
</table>
2.5.1.1 Planning

Calculation of the heating mat’s area

When selecting required dimensions of a heating mat, it is necessary to plan its layout on the floor surface free from any furnishings. The area of the heating mat should be equal to or slightly lower than the area of the unfurnished floor. In the latter case, the mat should be laid in such a way so as to ensure that any underheated areas (cold spots) adjoin the walls (see example).

Bathroom area:
2.80 x 2.80 = 7.84m²
Unfurnished area: 5.92m²

The length of the heating mat which can be positioned on the unfurnished floor:
3 x 1.60m + 2 x 2.80m = 10.40m

Area of heating mat:
10.40m x 0.50m = 5.20m²

ELEKTRA MG or ELEKTRA MD heating mats can be selected, of max. dimensions 0.5m x 10.0m and the area of 5.0m².

Choice between ELEKTRA MG and ELEKTRA MD heating mats will be determined by the possibility to raise the floor level, as ELEKTRA MD heating mat is approx. 1mm thicker than ELEKTRA MG.

Installation methods of the heating mat

When selecting a heating mat, whether with single-side power supply (MD) or double-side power supply (MG), it is required to lead the mat’s power supply cables (4m long) to the electric installation box where the temperature controller will be positioned.

Example layout of a single-side power supply ELEKTRA MD heating mat (power supply conductor marked in black)
Selection of the heating mat’s heat output
If heating mats are to constitute the primary heating system in a room, the required heat load should be calculated according to section 2.1.5. Selection between the heat output of 100 or 160W/m² depends on the total heat load and the area of the unfurnished floor surface.

For the example discussed above, the heat output necessary to cover the heat losses (calculated result for example 47W/m) and maintain the required temperature will be:
\[7.94m^2 \times 47W/m = 368W \]
(the heat load value has been assumed as in the example from section 2.1.5).

Calculated heating mat’s area: 5 m². ELEKTRA MG 100/5.0 or ELEKTRA MD 100/5.0 heating mats would be selected, of the heat output 500W. The resulting heat output per 1m² of the bathroom’s area will be
\[\frac{500W}{7.84m^2} = 63.8W/m^2. \]

For bathrooms, higher temperature requirements are assumed than for other rooms, therefore selection of the higher heat output value is recommended.

Example: primary heating
In the kitchen of the area 9.36m², unfurnished area is 5.5m². Heat output necessary to cover the heat losses and maintain the required temperature will be:
\[9.36m^2 \times 47 = 440W. \]

The heating mat’s area to be fitted to the unfurnished area is 5m². ELEKTRA MD 100/5.0 or ELEKTRA MG 100/5.0 will be selected, of the heat output 500W.
2.5.1.2 Installation
Before installing a heating mat, it is important to remember:

- Do not cut the heating cable for any reason
- To properly fit the mat to the shape of the floor, only cut the mat netting
- Do not shorten the heating cable
- Do not overstretcher the heating cable
- Do not place the floor heating under permanently furnished areas
- Do not cross the heating mat over an expansion joint in the floor
- Electrical connections should only be done by a qualified electrician
- Use only flexible tile adhesives that are suitable for floor heating
- Heating mats should be installed at a minimum distance of 100mm away from other heat sources, i.e. smoke flues, central heating pipes, and/or water heating pipes

Installation of heating mats
To prepare the mat to fit the required area, shape the mat by cutting only the mesh and position it on the floor to be heated.
Typical layouts for heating mats

ELEKTRA MG heating mat (two cold tails)

ELEKTRA MD heating mat (one cold tail)

Distance $a_1 = a_2$

4m "cold tail" supply cable
Installing the Temperature Sensor and its Cable
If possible, the temperature sensor should be placed in between the cables at the centre of the heated surface.
- The cable with the sensor is protected by a flexible pipe sealed at one end
- A groove to fit the temperature sensor pipe should be made before installing the temperature sensor
- The pipe containing the temperature sensor should be led to the temperature controller

Installing the Heating Mat
Stone and ceramic flooring:
- The heating mat should be completely covered by flexible tile adhesive
- The tile adhesive can not be spread on the entire surface of the floor at once; the heating mat should be covered progressively
- When the mat is properly fixed on the floor, the "cold tail" supply cable should be taken in the flexible pipe to the temperature controller installation box

For parquet, laminate, engineered wood, carpet or PVC flooring, heating mats should be installed in a self-levelling screed / compound.
It is then required to:
- lay the heating mat on the entire area to be heated
- fix to the floor
- lay the self-levelling slab
2.5.2 ELEKTRA DM and UltraTec Heating Cables

The ELEKTRA DM/UltraTec heating cable is a thin heating cable with a power rating of 10W/m. It has a 2.5m supply cable at one end and a joint at the other.

This type of cable should be installed in a thin, flexible tile adhesive or self-levelling compound.

Because of the small thickness, ELEKTRA UltraTec cables can be used in applications where elevating the floor level is not an option.

Primary heating

When selecting the heating cable, it is necessary to consider:

• the heat demand of the room, necessary to cover the heat losses and maintain the required temperature level (section 2.1.5)
• the fixed-furniture-free floor area, where the heating cable can be laid
• the heating cables should be laid at the maximum distance of 100 mm from one another, so that the underheated spots would not occur
• the heating cables should be laid at the minimum distance of 50 mm from one another, for ceramic tile finishing or stone floors, and 100 mm for the wooden floors, PVC or fitted carpet floorings
Warm floor

- Ceramic tiles and stone flooring heating cables should be laid with the spacing of 6.5 ÷ 10cm. For larger spacing, uneven temperature distribution (temperature differences over 2°C) on the floor surface will appear. Closer spacing of heating cables will speed up reaching full capacity of the warm floor's operation, for the conditions of noncontinuous operation of the heating.

- Wooden flooring with PVC heating cables should be laid with the spacing of approx. 10cm.

In order to calculate the required heating cable's spacing, apply the following formula:

\[a-a = \frac{S}{L+0.5P} \]

where:

- \(a-a \) – spacing between cables
- \(S \) – floor surface area for the floor heated with the heating cable
- \(L \) – heating cable's length
- \(P \) – floor surface perimeter for the floor heated with the heating cable

Example: primary heating

Bathroom area: 8m²
Floor surface area free from fixed furnishings: 5.5m²

Heat output necessary to cover the heat losses and maintain the required temperature will be assumed as in section 2.1.5.

The heating cable ELEKTRA DM 10/400, 40m long, of the heat output 400W will be selected.

The spacing between the heating cables will be:

\[a-a = \frac{S}{L+0.5P} = \frac{5.5m^2}{40m+4.7m} = 0.123m=12cm \]

The spacing of 12cm is required for the heating cables to cover heat losses. It is reasonable to lay the cables with denser spacing to prevent creation of underheated areas (cold spots) on the floor surface. For this, select the subsequent (longer) heating cable available in the range.

Installation

- the floor surface destined for the heating cables should be thoroughly cleaned and primed to allow effective fixing of the cable with a hot glue gun
- the heating cable with a floor temperature sensor should be installed as shown in section 2.5.1.2
- the heating cable should be laid out avoiding fixed furnishings and attached with self-adhesive tape – if the layout hasn’t been planned properly, the self-adhesive tape can be removed and the layout of the cable changed

Initial fixing of the heating cable utilising self-adhesive tape
1.5.3 Wiring Details

The power supply should be connected via a temperature controller. The power supply should be protected by an RCD (Residual Current Device) with a sensitivity of \(\Delta \leq 30\text{mA} \).

- the heating cable has to be fixed to the floor with hot glue
- the heating cable already fixed to the floor should be covered with:
 - the layer of tile adhesive – for stone and ceramic flooring
 - self-levelling slab – for other flooring

ELEKTRA DM/UltraTec heating cables could be also fastened to thin wire netting or ELEKTRA TME installation tape. This type of installation requires a larger quantity of tile adhesive or self-levelling compound and will increase the floor thickness.

Connection diagram

Fixing of the heating cable utilising of hot glue

Room heating
2.6 Under-laminate Floor Heating – Dry Installation

Laminate flooring or engineered wood floors may be heated with ELEKTRA WoodTec™ heating mats installed directly on the floor base. ELEKTRA WoodTec™ heating mats have been designed as the supplementary heating system to provide users with warm floors. In buildings with excellent thermal parameters, these heating mats can be used as the primary heating system.

2.6.1 ELEKTRA WoodTec™ Heating Mats

Heating cables are attached to a fiberglass mesh and covered with aluminum foil on the reverse side. The aluminum foil provides a protective shielding (earth) for the heating cables. Each heating mat is 500mm wide.
The ELEKTRA WoodTec™ heating mats are 1.9mm thick and have 4.0m cold tails at both ends.

The ELEKTRA WoodTec2™ heating mats are 2.8mm thick and have a 4.0m cold tail at one end.

The single-sided ELEKTRA WoodTec2™ mats are easier to install, due to the single supply cable.

The installation of the double-sided ELEKTRA WoodTec1™ mats is more complicated because both of the ‘cold tail’ supply cables must be connected to the temperature controller.

Due to the miniscule thickness, they are commonly used in places where the floor can not be raised too much.

It is possible to install two or more mats in a single room. In this case the mats should be connected in parallel.

Heating mat power ratings:
- ELEKTRA WoodTec1™ – 60W/m²
- ELEKTRA WoodTec2™ – 70W/m²

* Power rating of 140W/m² in the UK

Construction of the ELEKTRA
WoodTec™ heating cable
2.6.2 Planning
Before choosing the heating mat(s) for a room (the heating mats come with a fixed width of 500 mm), their arrangement on the floor or on the selected floor areas should be planned.

The heating mats must not be laid in places where fixed pieces of furniture will later stand. The heating mats can be cut to a desired shape and then laid out in various directions. While cutting the mat, the fiberglass mesh and aluminum foil may be cut, but never the heating cables.

Example of layout using ELEKTRA WoodTec1™ heating mats

Typical layouts for heating mats (with two cold tails)
2.6.3 Underlay

The insulating underlay must be at least 6mm in thickness. The following issues should be taken into consideration:

- sound insulation
- mechanical parameters
- thermal insulation (the better the insulation, the shorter the time to warm up the floor)

Extruded polystyrene (XPS) insulating underlay meets these requirements optimally.

![Cross section of the floor](image)

2.6.4 Installation

The same rules should be as for ELEKTRA MG/MD heating mats (Section 2.5.1.2), except for the last two issues.

Preparation:

- Choice of the location for the temperature controller (Section 4.1)
- Installation of a installation box for the temperature controller (Section 4.2)
- Installation of flexible conduits (Section 4.2)

Laying the Heating Mat and Flooring:

- The vapour barrier has to be laid over the prepared floor surface. The vapour barrier thickness should be at least 0.2mm. At least 20mm wide overlaps between vapour barrier sheets should be provided and the edges of the vapour barrier sheets turn up against the walls up to 50mm.
- The temperature sensor wire should be fed into the installed flexible conduit and lead to the temperature controller installation box.

![Temperature sensor installation (depth of the groove should be 10-12mm)](image)
2.6.5 Connection To Mains

ELEKTRA WoodTec™ heating mats must be connected to mains via a temperature controller. The mains supplying power to the mats should be protected with an RCD (Residual Current Device) with a sensitivity of $\Delta \leq 30\text{mA}$.

- Insulating underlay of at least 6 mm thickness should be placed over the vapour barrier.
- Now it's time to lay out the ELEKTRA WoodTec™ heating mat.
- The heating mat has always to be laid out with it's aluminum foil layer facing up.
- With the heating mat in place grooves in the insulating underlay and in the floor, if necessary, should be cut to compensate for the extra thickness of the heating mat's cold tails, so a level surface is achieved.
- If the aluminum foil was cut when the heating mat was customized, adhesive aluminum tape should be used to join the heating mat sheets as shown in the picture. The aluminum foil serves as shielding for the heating cables, therefore the sheets must be electrically connected.
- With the heating mat in place a protective layer (polyethene sheet, 0.2mm) should be laid out on top.
- Installation of laminate or engineered wood flooring.

Connection diagram

ELEKTRA WoodTec2™
- Single-side power supply
- Heating mat
- Cables of wiring system:
 - Mains cable (black or brown)
 - Neutral cable (blue)
 - Protective cable (green-yellow)
 - Protective cable (green-yellow)
 - Temperature controller
 - Copper screen

ELEKTRA WoodTec1™
- Double-side power supply
- Heating mat
3. Wall Heating

3.1 General Information
Temperature of building components, especially external walls, generating the outward heat loss, influences thermal comfort in rooms. The temperature of building components should not drop below indoor air temperature. Only wall heating can provide such conditions.

Wall heating is the low temperature surface heating system where heated external room walls are heaters. The heating surface temperature should amount to 24-28°C.

Wall heating can be applied as:
• room heating,
• supplementary heating for rooms with underfloor heating, when the floor surface is not enough to cover heat losses,
• drying out wall surfaces.

Wall heating can be realised with:
• ELEKTRA MG or MD heating mats,
• ELEKTRA DM heating cables.

ELEKTRA VCD12 heating cables (on special order only) or ELEKTRA VCD17 heating cables can be applied for the purposes of drying out wall surfaces.

External walls designed for wall heating should be well insulated, i.e. fulfill the following condition:
\[U \leq 0.3 \text{ W/m}^2\text{K} \]

3.1.1 Designing wall heating systems
When designing a wall heating system, first assess:
• design heat load for a room,
• external wall surface area available for the heating purposes.

3.1.2 Installation
Heating cables or mats should be glued to the external wall and covered with a layer of plaster. In rooms of regular shapes, installation of heating mats should not cause a problem, in other situations ELEKTRA DM heating cables can be applied.
For the installation methods of heating mats and cables, as well as for the correct positioning method of a temperature sensor, please refer to chapter 2.5.

In this case, the floor sensor will act as the wall temperature sensor, and its installation method will be the same as for the underfloor heating (chapters 4.1, 4.2).

The heating system should be laid max. at 2m of height. For plastering of heating walls the following are recommended:
- lime-sand mortars,
- conventional lime and cement-lime plastering materials.

Gypsum plasters are not recommended. Installation of heating cables or mats on the walls does not influence the regular plaster thickness.

3.2 Drying Out Wall Surfaces
The cause of appearance of wall moisture is:
- frost penetration in foundations and walls of buildings,
- faulty anti-moisture insulation of foundations and walls,
- poor ventilation,
- high degree of relative humidity in the room (exceeding 65%),
- frequent flooding.

Moisture contributes to development of mould and fungus which damage walls and plasters, as well as negatively influence the health of inhabitants.

ELEKTRA VCD12 heating cables (on special order only) or ELEKTRA VCD17 heating cables should be laid in the wall's mortar joint or in dedicated grooves. The groove spacing with installed heating cables should be carefully filled up with plastering mortar.

Switches with the on/off signalling must be applied for the control of the heating systems, due to intervention characteristics of operation.
In room heating, a variety of temperature controllers can be applied:
- electromechanical
- electronic
- programmable electronic

For rooms that do not require precise temperature control, electromechanical controllers may be used whose inertia may be even ±5°C.

Electronic controllers feature highly accurate temperature measurements (0.1-0.3°C).

Programmable electronic controllers feature the possibility to program temperature settings for 24 hour- or weekly cycles. The following information is displayed on LCD screens:
- actual room temperature
- programmed temperature (comfort and setback)
- operation time of the heating system
- number and the graphic symbol of the running program

Some controllers are equipped with an adaptive function: the controller will automatically calculate the switch-on time of the heating system to obtain the required temperature, in the time programmed by users.

If the floor heating system is supplementary to the existing (primary) heating system, users will be interested mainly in achieving warm floors – application of temperature controllers is then recommended, equipped entirely with a floor temperature sensor.

If the floor heating system is the primary source of heating, and users will be interested in obtaining optimal room temperatures – it is recommended that a controller equipped with an air temperature and a floor limitation sensor is used. Due to the installation method, the controllers are classified as follows:
- flush
- surface
- mounted on DIN rails

Classification of controllers

due to type of temperature measurement method:
- with a floor temperature sensor
- with an air temperature sensor and floor limitation sensor (this controller type will measure air temperature and, simultaneously, the floor sensor will protect the floor and cables from overheating), additionally this type of controllers can be equipped with a function securing min. floor temperature
4.1 Temperature Controller Placement

A controller with an air and floor limitation sensor should be installed on a wall inside the heated room, at 1.4 - 1.5m above the floor. It should not be exposed to direct sunlight and draughts. There is no limitation on placement for controllers equipped just with a floor sensor.

However, if the room being heated is often exposed to humid conditions (i.e. bathroom / sauna), only selected controllers with proper IP protection should be used.

Controllers with traditional floor sensor have no restrictions concerning their placement.

Some types of controllers may be installed in common frames in combination with light switches. It's not possible in all countries, so please check with your local regulations.

If it is required that the controller should not be visible or easily accessed (i.e. in hotel rooms), installing the controller on a DIN rail is possible. The floor sensor cable can be extended up to 100m.

4.2 Installation

Surface temperature controllers are installed on a wall with the use of an installation box. Flush temperature controllers are installed in deep flush installation boxes.

Temperature controllers for flush mounting are to be installed in a dedicated deep installation box.

The installation box should be supplied with 230V power supply with two flexible conduits (pipes) installed from the box to the floor. The flexible conduits should not be fixed at right angles, but instead, should be gently bent in the appropriate direction.

For aesthetic reasons, the conduits should be located in previously made chases. One conduit will contain cold tail supply cables for the mat, and the other a temperature sensor cable.
If possible, the temperature sensor should be located in the centre of the heated room, and be placed in an equal distance between two heating cables. The flexible conduit containing the temperature sensor cable should be sealed to protect it against moisture. It does not apply if the conduit is not placed in concrete or tile adhesive (Section 2.3 and 2.6).

Maximum heating load for temperature controller

If the heating load exceeds the rating of the temperature controller, a contactor should be used to switch the load (see diagram). The rating of the contactor should be greater or at least the same as the heating load.

Example of temperature sensor location

Wiring diagram for controlling heating load using single pole contactor

Wiring diagram for controlling heating load using three pole contactor
4.3 Temperature Controllers

Programmable Electronic Temperature Controllers

ELEKTRA OWDS WiFi
Flush mounting
The latest temperature controller model, with the WiFi functionality and all other features of the OCD5 controller. Temperature control takes place via a dedicated iOS or Android smartphone app.

ELEKTRA OCD5
Flush mounting
Temperature controller with a touchscreen display, featuring the function of programming 6 events per day. It consists of a controller body with a built-in air temperature sensor and a thin floor temperature sensor.

ELEKTRA OCD4
Flush mounting
The ELEKTRA OCD4 is programmable with 6 different temperature levels within a single day. Equipped with a thin room- and floor temperature sensors. Suitable for controlling the supplementary or primary heating systems, after adequate configuration.

ELEKTRA ELR 20
Flush mounting
Temperature controller with a large (2.9") LCD display, user’s friendly operation, enables programming of six events daily. Especially designed for the purposes of the control of heating systems, in particular under-floor heating. Equipped with a built-in air sensor, as well as floor sensor for floor temperature measurements and floor temperature limiting.

ELEKTRA OWD5 WiFi
The latest temperature controller model, with the WiFi functionality and all other features of the OCD5 controller. Temperature control takes place via a dedicated iOS or Android smartphone app.

An efficient dot-matrix display with a backlight creates an improved user interface. As OCD5, this controller is equipped with an adaptive function.

It is equipped with a 2-inch colour touchscreen display. The software includes a calendar function enabling programming dates of start and end of a holiday or absence period during which the heating will be off, or maintaining the min. set temperature. Due to the application of the QR code, it is possible to efficiently view the controller’s settings using a smartphone.

Adaptive function - the controller ensures comfort temperature at the required time as it’s able to calculate the thermal inertia of the floor. Gives the possibility of configuration in 3 variants of the temperature measurement, via the room or floor sensor, as well as the room and floor sensor (temperature limitation).

An efficient dot-matrix display with a backlight creates an improved user interface. As OCD5, this controller is equipped with an adaptive function.

ELEKTRA ELR 20
Flush mounting
Temperature controller with a large (2.9") LCD display, user’s friendly operation, enables programming of six events daily. Especially designed for the purposes of the control of heating systems, in particular under-floor heating. Equipped with a built-in air sensor, as well as floor sensor for floor temperature measurements and floor temperature limiting.
ELEKTRA Digi2p
Surface mounting
Programmable controller with 2 temperature levels within a day. Equipped with a floor temperature sensor. Designed for the control of supplementary heating systems.

Holiday temperature set-back - automatically turns the temperature back to the comfort level after a programmed number of days.

ELEKTRA OTD2
Flush mounting
Manual controller configurable for one of 3 temperature measurement methods:
• air temperature sensor**,
• floor temperature sensor,
• air temperature and floor limitation sensor*.

This controller may be used for both supplementary and primary heating systems. Minimum and/or maximum floor temperatures can be set. Equipped with a temperature display. An external timer may activate the temperature set-back.

ELEKTRA OTN
Flush mounting
Manual controller equipped with a floor temperature sensor. Designed for the control of supplementary heating systems. An external timer may activate the temperature set-back.

ELEKTRA ETV
DIN-rail mounting
Manual controller. An external timer may activate the temperature set-back (5°C). Equipped with a floor temperature sensor. Designed for the control of supplementary heating systems.

ELEKTRA ETV

Possibility to install controllers in one frame with light switches (not UK)
ELEKTRA ETN4

DIN-rail mounting

Temperature controller supporting two temperature sensors, including a limiting one. Large backlit display presents the operating parameters of the controller. Especially designed for the control purposes of electric heating systems, both primary and supplementary. Adjustable hysteresis allows to define the floor temperature measurement’s precision – the function which will prove useful in storage heating. Connecting an external timer will access the options of (night) set-back, temperature increase and anti-frost protection.

To successfully operate as the primary heating controller, the ELEKTRA ETN4 should be equipped with the ETF-944/99 air sensor and ETF-144/99T floor sensor. This configuration will enable control of air temperature with simultaneous anti-overheating floor protection.

DIN-bus connection diagram for the ETN4 controlling the primary heating system
5. Product Selection Guide

<table>
<thead>
<tr>
<th>Type of heating</th>
<th>Type of room</th>
<th>Type of floor</th>
<th>in-screed heating</th>
<th>heating directly under floor finish</th>
<th>Temperature controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PVC and wood flooring glued to the floor</td>
<td>- - - - + + - - - -</td>
<td>OWD5-1999 OCD5-1999 OCD4-1999 ELR 20 Digi2p OTD2-1999 OTN-1991 ETV-1991 ETN4-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>laminate or engineered wood flooring</td>
<td>- - - - - - - - - +</td>
<td>OWD5-1999 OCD5-1999 OCD4-1999 ELR 20 Digi2p OTD2-1999 OTN-1991 ETV-1991 ETN4-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>carpet, PVC and wood flooring glued to the floor</td>
<td>+ - - - + + - + -</td>
<td>OWD5-1999 OCD5-1999 OCD4-1999 ELR 20 Digi2p OTD2-1999 OTN-1991 ETV-1991 ETN4-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>suspended wooden floors</td>
<td>+ - - - - - - - -</td>
<td>OWD5-1999 OCD5-1999 OCD4-1999 ELR 20 Digi2p OTD2-1999 OTN-1991 ETV-1991 ETN4-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>churches, commercial and industrial premises, basements, garages</td>
<td>ceramic tiles, stone, resin flooring, concrete</td>
<td>- + + + - - - - -</td>
<td>OWD5-1999 OCD5-1999 OCD4-1999 ELR 20 Digi2p OTD2-1999 OTN-1991 ETV-1991 ETN4-1999</td>
<td></td>
</tr>
<tr>
<td>storage</td>
<td>rooms in residential buildings</td>
<td>ceramic tiles, stone, resin flooring</td>
<td>- + - - - - - - -</td>
<td>individual selection suitable for a particular design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>churches, commercial and industrial premises, basements, garages</td>
<td>ceramic tiles, stone, resin flooring</td>
<td>- + + + - - - - -</td>
<td>individual selection suitable for a particular design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ceramic tiles, stone</td>
<td>- - - - - - - - -</td>
<td>individual selection suitable for a particular design</td>
<td></td>
</tr>
</tbody>
</table>

Product Catalogue page 115
<table>
<thead>
<tr>
<th>type of heating</th>
<th>type of room</th>
<th>type of floor</th>
<th>heating cables</th>
<th>heating mats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>VCD</td>
<td>VC</td>
</tr>
<tr>
<td>wall heating</td>
<td>all rooms</td>
<td>plaster, ceramic tiles, stone</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
6. Snow and Ice Protection

ELEKTRA systems protect against snow and ice on roofs, gutters, conductors, roads, stairs, terraces, viaducts, bridges and much more. The unique design and proficient performance allows the heated surfaces to be free of snow and ice through proper control.

To eliminate the negative results of unsightly weather, it is recommended that controllers with microprocessors are used. The system can be efficiently programmed for the controllers to measure the temperature / humidity and to predict the possibility of weather conditions that require the system to start.

The capital costs for a snow & ice protection system are low. The running costs are often the subject of debate, especially when considering large areas which require a large amount of power. The system must be regulated by a suitable controller, to ensure efficient operation only when it's snowing or raining in freezing temperatures. There are almost no snow falls in temperatures below -10°C, so the system will stay in stand-by mode for those temperatures.

In most European countries, there are just a few days a year where the weather conditions permit the system to turn on. In this time, heating will operate for about 30-100 hours in total to easily remove snow build up and prevent ice formation.

6.1 Outdoor Surfaces

When heating external areas, it is required to assess the required heat output value per m². Recommended heat output depends on the regional climate conditions, i.e. minimum ambient temperature, snowfall intensity and wind strength.

Higher output is required if the heated area is:
• exposed to low temperatures,
• exposed to wind chill from below:
 – bridges, stairs, loading platforms,
• located in regions of intense snowfall.

Applying insulation layer to the surfaces exposed to wind chill from below can improve the heating system’s effectiveness.

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>Power output [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>> -5°C</td>
<td>200</td>
</tr>
<tr>
<td>-5°C ÷ -20°C</td>
<td>300</td>
</tr>
<tr>
<td>-20°C ÷ -30°C</td>
<td>400</td>
</tr>
<tr>
<td>< -30°C</td>
<td>500</td>
</tr>
</tbody>
</table>

For heating external areas, the following options can be utilised:
• ELEKTRA VC20 single-side supplied heating cables (power output 20W/m),
• ELEKTRA VCD25 single-side supplied heating cables (power output 25W/m),
• ELEKTRA SnowTec® heating mats, made from ELEKTRA VCD heating cable (mat’s power output 300W/m²).
• ELEKTRA TuffTec™ single-side supplied heating cables (power output 30W/m) for 230 and 400V,
• ELEKTRA SnowTec® Tuff heating mats, for 230 and 400V, made from ELEKTRA TuffTec™ heating cable - mat’s surface power 400W/m²
ELEKTRA VCD heating cable structure
- Heat resistant PVC outer sheath
- Tinned cooper braiding
- PET covered aluminum foil shield
- XLPE insulation
- Multi-wire heating core

ELEKTRA VC heating cable structure
- Heat resistant PVC outer sheath
- Tinned cooper braiding
- PET covered aluminum foil shield
- XLPE insulation
- Multi-wire heating core

ELEKTRA TuffTec™ heating cable structure
- UV resistant HFFR outer sheath
- Tinned copper braiding
- HDPE second insulation layer
- FEP first insulation layer
- Multi-wire heating core
6.1.1. Installation

Heating cables or mats can be laid:
- in the layer of sand or dry concrete constituting the base for the asphalt, flagstone or paving cobbles surfaces,
- directly in concrete,
- directly in asphalt (exclusively TuffTec™).

To maintain fixed positioning of the cables and steady spacing conforming to the calculated values, the cables need to be attached with the ELEKTRA TMS installation tape (in sand bases or asphalt) or ELEKTRA TME aluminium installation tape (in concrete). Optionally, cables can also be attached with an installation mesh of 5 x 5cm grid, made of Ø 2mm wire.

Heating mats also require securing to the surface, so that the mats’ heating cables remain in a fixed position.

In order to calculate the required spacing between cables, apply the following formula:

\[a-a = \frac{S}{L} \]

where:
- \(a-a \) – spacing between cables
- \(S \) – floor surface area for the floor heated with the heating cable [m²]
- \(L \) – heating cable’s length [m]

<table>
<thead>
<tr>
<th>heat output per m² of the heated area [W/m²]</th>
<th>VC 20</th>
<th>VCD 25</th>
<th>TuffTec™30</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>[cm]</td>
<td>[m]</td>
<td>[cm]</td>
</tr>
<tr>
<td>250</td>
<td>12.5</td>
<td>8.0</td>
<td>10.0</td>
</tr>
<tr>
<td>300</td>
<td>15.0</td>
<td>6.7</td>
<td>12.0</td>
</tr>
<tr>
<td>350</td>
<td>17.5</td>
<td>5.7</td>
<td>14.0</td>
</tr>
<tr>
<td>400</td>
<td>20.0</td>
<td>5.0</td>
<td>16.0</td>
</tr>
<tr>
<td>450</td>
<td>20.0</td>
<td>4.5</td>
<td>18.0</td>
</tr>
<tr>
<td>500</td>
<td>20.0</td>
<td>4.0</td>
<td>20.0</td>
</tr>
<tr>
<td>600</td>
<td>20.0</td>
<td>3.5</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Selection of the proper heating cable or heating mat depends on:
- the required power output per m² of the heated area,
- time horizon for completing the works on the heating system,
- shape of the heated area,
- number of power supply cables (double-side supplied cables require having both power supply conductors fed to the installation box, single-side supplied cables – only one),
- the cable’s endurance and thermal requirements.

Heating mats are an optimal solution for projects, where heating systems must be installed within a strict deadline (heating systems assembled from heating cables require approx. 6-8 longer installation time than in case of heating mats). However, heating systems assembled from heating mats require that the shapes of areas to be heated are not too complex, e.g. rectangular areas.

ELEKTRA TuffTec™ heating cables and SnowTec™ Tuff heating mats have been especially designed for installations in conditions characterized by the increased risk of mechanical damage e.g. in case when concrete consolidation machinery is utilized for surface works. Due to their high thermal resistance as well as resistance against bituminous substances, ELEKTRA TuffTec™ heating cables and SnowTec™ Tuff heating mats can be installed directly in asphalt.

The length of the heating cable per 1m² of the heated surface and the spacing for laying the heating cables depend on the type of the selected cable and required heat output.
Paving cobbles, concrete flagstones or asphalt surfaces

The hard core base that is covered by a thin layer of sand or dry concrete serves as a base for ELEKTRA VC/VCVD heating cables or ELEKTRA SnowTec® mats.

The supply cables should be led directly to the switchboard, and then covered with packed sand. Lastly, these layers should be covered by the desired surface.

Concrete Surfaces and Reinforced Concrete Surfaces

In concrete surfaces, heating cables should be fixed with:

- ELEKTRA TME aluminium installation tape or
- any installation tape with mesh dimensions 10 x 10cm, made of Ø4mm diameter wire

In reinforced concrete surfaces heating cables should be fixed to reinforcement of concrete slabs. This installation method will protect cables against mechanical damage during laying concrete and concrete vibration.

Switching the system on may be executed only after the concrete has completely cured, i.e. after 30 days. The length of heating mats or cables must be selected in the way so as not to cross expansion joints.
Only power supply conductors may cross expansion joints. They must be then positioned in min. 50cm long metal protective conduits.

Asphalt surfaces

After laying the ELEKTRA TuffTec™ heating cables or SnowTec® heating mats, proceed with the manual laying of the asphalt layer.

6.1.2 Loading Bays and Driveways

Depending on the location of the driveway (either in an open or built up area) and the climate, it is necessary to select required heat output per m² of the heated area. Heating mats or cables should be installed under the entire surface or merely where the tyres will drive.

Example: Driveway to garage, 10m long

Surface: Block paving

Using ELEKTRA SnowTec® heating mats. Two runs of heating with a width of 600mm each, to clear tyre tracks. Use ELEKTRA SnowTec® 300/10, power rating 1860W, the total power would be

\[2 \times 1860W = 3720W = 3.72kW. \]

![Typical layout of ELEKTRA SnowTec® on driveway to garage](image-url)
Example: Driveway to garage with concrete surface, 10m long. ELEKTRA SnowTec® heating mats are used. The 10m driveways have an expansion joint, which must not be crossed by the heating mat(s). This should be taken into consideration when choosing the length and number of heating mats. Four 5m long ELEKTRA SnowTec® 300/5 heating mats were selected. Each mat has a power of 930W.

The temperature and moisture sensor is to be placed within the heated surface. It should not be positioned directly under the car wheel track to avoid bringing in the snow. Small amount of snow poses no threat to the system's integrity, however it could cause the system switch on unnecessarily.

It is also necessary to warm up the drainage channel, in order to ensure the outflow of snow melt water residue. The ELEKTRA SelfTec® PRO 33 self-regulating heating cable is recommended for this purpose (chapter 7.2.2). The cable should be placed on the bottom of the drain, with the length of 0.5 - 1.0m downfed into the drainage system. The heating circuit then needs to be connected to the power supply unit in the vehicle's main switchboard, to ensure operation start simultaneous with other heating circuits.

For the connection of the self-regulating cable and the power supply conductor, ELEKTRA EC-PRO joint set will be required.
Constructions not positioned on ground, vulnerable to influence of low temperatures and wind from the bottom – ramps, footbridges, overpasses – require fixing heating cables to upper reinforcement of concrete slabs.
6.1.3 Car Parks
Parking dimensions:
9m x 21m = 189m²
Surface material: Block paving

Example 1a:
Heating mat type: ELEKTRA SnowTec

Given the dimensions of the parking lot, the appropriate heating mats would be SnowTec® 300/9, each having an individual length of 9m and 1680W of power.

By installing mats that have identical lengths to that of the parking width, all of the supply cables will be installed on one edge. This concentration of cables along a single-side of the car park will simplify connecting the mats to an electrical supply.

Heating mat width: 600mm
Minimal distance between mats: 100mm
Space per mat required: 600mm + 100mm = 0.7m
Total mats: 21m / 0.7m = 30 mats
Total ELEKTRA SnowTec® 300/9/400V mat power:
1680W x 30 = 50400W.
Surface power of 1 m²:
50400W / 189m² = 267W/m²

To increase the effectiveness of operation of the car park or loading ramp’s protection, it is necessary to apply an additional temperature and moisture sensor.
Example 1b: Installing ELEKTRA VCD25/400V Heating Cables

When selecting heating cables, it is important to consider how they are going to be installed. By installing all cold supply cables to one side of the car park, it is easy to connect the mats to the power supply.

Required power per m²: 300W/m²
Total parking heating power required: 189m² x 300W/m² = 56700W.
Selected cable type: ELEKTRA VCD 25/5600/400V (227m).
Cables required: 56700W / 5600W = 10 pcs
Total cable length: 10 x 225m = 2250m.

Distance between cables:
\[\frac{a-a}{2} = \frac{189m^2}{2250m} = 0.084m = 84mm \]

Power per 1m²:
\[10 \times \frac{5600W}{189m^2} = 296W/m^2 \]

Example 2: Reinforced Concrete Car Park

Dimensions: 10m x 21m = 210m².
- The area of the car park is divided by expansion joints (as shown)
- Heating cables or mats must be installed so that the expansion joints are not bridged. This should be taken into consideration when choosing the length and number of heating cables.
- In the example, there are 6 heated areas, each with an area of 7m x 5m = 35m².

Example of heating mats or cables on heated spaces P1-P6 in a reinforced concrete car park
Installation with ELEKTRA VCD25 Heating Cables
Required power per m²:
250-300W/m²
Total heating power required:
between 8750W and 10500W.

Given the dimensions, one VCD 25/3030 cable (with a capacity of 3300W and a length of 130m) and two VCD 25/3030 cables (with a capacity of 3030W and a length of 120m) would be used.

Heating capacity per area:
3300W + 2 x 3030W = 9360W
Total heating capacity:
6 x 9250W = 56160W
Capacity per 1m²:
55500W / 210m² = 267.4 W/m²
Distance between cables:
a-a = 35m² / 130m + 2 x 120m = 0.095m = 95mm.

Installation with ELEKTRA SnowTec Heating Mats
The ideal heating mat for the areas would be the ELEKTRA SnowTec® 300/5 with a power capacity of 930W.
Heating mat width: 600mm
Minimum distance between mats: 100mm
Space per mat required: 700mm = 0.7m
Number of mats per area: 7m / 0.7m = 10
Single field power capacity: 10 x 930W = 9300W
Total mats needed: 10 x 6 = 60
Total power capacity: 60 x 930W = 55800W
Capacity of 1m²:
55800W / 210m² = 265.7 W/m²

If there is no reinforcement, the heated areas (divided by expansion joints) should not exceed 9m².
6.1.4 Stairs
Effective anti-snow and ice protection will be achieved when selecting properly the required heat output, according to the table (chapter 6.1). In case of suspended stairs (not positioned directly on the ground), the selected heat output should be increased with approx. 20%.

The following cables can be used for stair heating:
- An ELEKTRA VCD25 one cold tail with a power rating of 25W/m
- An ELEKTRA VC20 two cold tails with a power rating of 20W/m

The type of cable used is dependant on the desired method of installation. If the heating cables are going to be located at the bottom of the steps it is easier to use ELEKTRA VCD25 with one cold tail.

Installing the cables will cause an increase in step thickness. If such an alteration is not possible, ELEKTRA VC20 or ELEKTRA VCD25 should be set inside grooves made in the steps.

Example: outer stairs made of reinforced concrete
- Number of steps: 4
- Length of step: 1.2m
- Width of step: 300mm
- Height of step: 150mm
- Landing: 1.2 x 1.2m
- Heating power: 300W/m²

a) heating using ELEKTRA VCD25 (single-side power supply)
To achieve power of 300W/m² using 25W/m cable, the spacing a-a between cables should be:

\[a-a = \frac{25W/m \times 100cm/m}{300W/m²} = 8cm \]

On one step with dimensions 0.3 x 1.2m, the following length of heating cable should be used:

\[\frac{300W/m²}{25W/m} \times 0.3m \times 1.2m = 4.3m \]

Length of heating cable laid out on 4 steps of stairs: 4 x 4.3m = 17.3m
This length should be increased by height of steps: 4 x 150mm = 600mm
Length of heating cables laid out on the landing:

\[\frac{300W/m²}{25W/m} \times 1.2m \times 1.2m = 17.3m \]

Total length of cable required: 35.2m.

We select ELEKTRA VCD 25/890 heating cable with a length of 36m.
b) heating using ELEKTRA VC20 (double-side power supply)
To achieve power of 300W/m² by using a cable with power rating of 20W/m distance a-a between cables should amount to:

\[
a-a = \frac{20 \text{W/m} \times 1 \text{m/m}}{300 \text{W/m}^2} = 60 \text{mm}
\]

Length of cable installed at one step:

\[
\frac{300 \text{W/m}^2}{20 \text{W/m}} \times 0.3 \times 1.2 = 5.4 \text{m}
\]

Length of cable installed on 4 steps:
4 x 5.4m = 21.6m
The length should be increased by height of steps:
4 x 150mm = 600mm = 0.6m
Length of cable installed on the landing of the stairs:

\[
\frac{300 \text{W/m}^2}{20 \text{W/m}} \times 1.2 \times 1.2 = 21.6 \text{m}
\]

Total required length of heating cable is 43.8m. We select ELEKTRA VC 20/830 with length of 42m.
After the required heating cable’s length has been estimated, plan the cable’s layout on the steps and landings.
Installation

ELEKTRA heating cables should be positioned with the min. spacing of 50 mm.

Due to the fact that the vertical surfaces of the steps are not heated, the heating cable run on the surface of each step, which is closest to the edge. It’s recommended to cut out grooves for the heating cables to be laid into. The cables should then be covered by mortar. This installation method makes it much easier to install tiles on the stairs without raising the height of the steps.

When installing up a flight of stairs, the heating cables should be installed directly on the surface of the steps through means of a wire net or ELEKTRA TME installation tape. The fixed cables should then be covered in a layer of 30mm (minimum) cement.
6.2 Roofs and Gutters
Snow and ice protection systems protect against:

- Snow and ice build-up on roofs
- Damage caused by ice build-up in gutters and downpipes
- Unsightly water damage on building walls
- Icicle formation

Damage to roofs and gutters can be far more costly than a heating system installation.

For the most effective heating system, the heating power should correspond to the guidelines shown in the table.

<table>
<thead>
<tr>
<th>Application of the selected heat output</th>
<th>Heat output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>> -5°C</td>
</tr>
<tr>
<td>Gutters & downpipes</td>
<td>20 W/m</td>
</tr>
<tr>
<td>Roof troughs</td>
<td>200 W/m²</td>
</tr>
<tr>
<td>Roof edges</td>
<td>~150 W/m²</td>
</tr>
<tr>
<td>Roof area extending beyond the building outline</td>
<td>~250 W/m²</td>
</tr>
<tr>
<td></td>
<td>-5°C ÷ -20°C</td>
</tr>
<tr>
<td>Gutters & downpipes</td>
<td>20 – 40 W/m</td>
</tr>
<tr>
<td>Roof troughs</td>
<td>200-250 W/m²</td>
</tr>
<tr>
<td>Roof edges</td>
<td>~250 W/m²</td>
</tr>
<tr>
<td>Roof area extending beyond the building outline</td>
<td>~300 W/m²</td>
</tr>
<tr>
<td></td>
<td>-20°C ÷ -30°C</td>
</tr>
<tr>
<td>Gutters & downpipes</td>
<td>40 – 60 W</td>
</tr>
<tr>
<td>Roof troughs</td>
<td>250 - 300 W/m²</td>
</tr>
<tr>
<td>Roof edges</td>
<td>~300 W/m²</td>
</tr>
<tr>
<td>Roof area extending beyond the building outline</td>
<td>~350 W/m²</td>
</tr>
<tr>
<td></td>
<td>< -30°C</td>
</tr>
<tr>
<td>Gutters & downpipes</td>
<td>60 W</td>
</tr>
<tr>
<td>Roof troughs</td>
<td>350 W/m²</td>
</tr>
<tr>
<td>Roof edges</td>
<td>~350 W/m²</td>
</tr>
<tr>
<td>Roof area extending beyond the building outline</td>
<td>~500 W/m²</td>
</tr>
</tbody>
</table>

The values given above refer to a gutter of the Ø100-125mm diameter. Gutters of larger diameters require application of the 20W/m higher heat output. Flat roofs, or when roof snow barriers are installed, which would cause snow deposition, require increase of the given values with approx. 15%.
Selecting the ideal power range is dependant on the climate the gutter system is installed in.

UV-resistant heating cables should be used to protect roofs and gutters:
- ELEKTRA VCDR
- ELEKTRA TuffTec™
- Self-regulating ELEKTRA SelfTec®

The ELEKTRA VCDR heating cables are characterized with the fixed power value of 20W/m, the TuffTec™ heating cables – 30W/m. Both types are offered as ready-to-install units, terminated with power cables (so called “cold tails”). While planning the installation's design, it is necessary to match the required cable lengths with the available ones.

Thanks to their exceptionally high resistance against damaging influence of any bituminous substances, ELEKTRA TuffTec™ heating cables are ideally suited for the purposes of heating roofs covered with tar paper or bituminous shingles.

The ELEKTRA SelfTec® self-regulating heating cables (of the characteristics described in detail in chapter 7.2.2) are available:
- as ready-to-install units terminated with power cables (so called “cold tails”), with the hermetically-sealed plugs - the ELEKTRA SelfTec® 16W/m cables designed for the do-it-yourself installation in the short segments of gutters, downpipes or other trouble spots requiring intervention.
- On the spool - the ELEKTRA SelfTec® PRO 20 designed for expanded professional installations.

Usually the cables are installed twice along the gutter, which allows the required heat power to be reached.

If in a mild climate the diameter of a gutter or downpipe is ≤ 120mm, double runs are not necessary.

In regions that receive large amounts of snowfall, heating only gutters and downpipes does not ensure a complete removal of snow and ice. In such climates, it is necessary to heat the edge of the roof (approximately 500mm) that borders the gutter.
If rainwater runs directly from the piping to a drainage system, the base of the pipe where freezing is likely to occur, should be heated.
Cable Fastening
Utilising assembly holders allows the correct distance to be kept between heating cables.

Gutters
The heating cables can be fastened to gutters and downpipes by the means of either clips or spacing wire with clips.
Spacing between the holders should not exceed 30cm.

Rain Water Pipes
In rain water pipes, heating cables are fastened by means of holders. Spacing between the holders should not exceed 40cm.

In case the length of the heating cable in water pipe exceeds 6m, a wire with holders should be used.
Flexible cable support will protect the heating cable against wear through in the joining spot of the gutter and downpipe.

Additional accessories

Flexible cable support
Downpipe spacing wire support bar

Roof troughs

Installation plastic band for roof troughs of small gradient
Self-adhesive installation tape for permanent fixing with metal sheet
Heating cables need to be fixed to the roof surface with copper tin holders or titanium zinc alloy-plated sheet holders.

- If the roof covering is metal sheet
 the holders can be:
 • glued to the roof surface,
 • fastened through means of rivets
 (with the fastening insulated with silicone),
 • suspended on insulated structural wires.

- If the roof covering is tiles,
 the holders can be:
 • fastened to the battens,
 • fastened to the battens and structural wire.

- on roofs covered with tar paper, roof tiles or bituminous shingles
 the holders are attached to the roof’s stretches with pieces of heat-sealing tar paper glued across the holders
6.3 Control
The most effective and economical solution is to use controllers equipped with both temperature and humidity sensors. The controller will only activate if the temperature and the moisture sensors detects signs of snowfall or ice buildup.

The ELEKTRA ETOG2 has been developed to control larger applications (max load 3 x 16A). It can control up to 2 zones or a single zone utilising 2 sensors. ETOG2 may also be used to control 2 separate areas, e.g. a driveway and gutters.

Smaller, single zone applications may be controlled by ELEKTRA ETR2 (max load 16A).

The controller should be installed in an enclosure and connected to the cold tail supply cable of the heating cable or mat and the temperature sensor cable. The controller should be provided with a power supply complying with wiring regulations.

6.3.1 Traffic Routes and Areas
Dependent on the size of the application and/or number of zones, an ETR2 controller with one temperature and humidity sensor, or an ETO2 controller with one or two such sensors should be used.

Regardless of the type and the location of the controller, the temperature and moisture sensor should be installed inside the heated surface, where it is exposed to the longest retention of humidity and the lowest temperature. The sensor should be installed 5mm below the surface to prevent water from seeping away.

Mounting of the temperature and moisture sensor should be done after covering the surface in concrete or block paving. The sensor should be mounted in the installation tube after the finishing surface is laid, therefore – before the finishing surface is ready in the place of the planned positioning of the sensor, a protective conduit should be led to the installation tube which will later serve to conduct the sensor’s cable safely.

It is recommended that the sensor cable is led to the controller without extending the cable. However, if an extension is needed, the connection should be made in a joint box or by using an approved heat-shrink joint.
6.3.2 Roofs and Gutters
Dependent on the size of the application and/or number of zones. ETR2 with one or ETO2 controller with one or two humidity sensors and an external temperature sensor should be used. The temperature sensor should be placed in an area that is not exposed to sunlight and the moisture sensor at the bottom of the gutter.

ETF-744
air temperature sensor
and ETOR-55 moisture sensor

6.3.3 Controllers Configuration
Traffic routes and areas

Small applications, 1 zone

Large applications, 2 zones

ETF-744
ETOR-55
additional ETOG-56T

Snow and Ice Protection
Roofs and gutters

Small applications, 1 zone

Large applications, 1 zone

Large applications, 2 zones

Large applications, 1 zone

2 separate areas (e.g., a driveway and gutters)

2 zones

additional ETOG-56T temperature and moisture sensor

additional ETOG-56 moisture sensor

Snow and Ice Protection

www.elektra.eu
6.4 Product Selection Guide

<table>
<thead>
<tr>
<th>Application</th>
<th>Heating Power</th>
<th>Heating Cables</th>
<th>Heating Mats</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant wattage</td>
<td>Self-regulating</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VC 20</td>
<td>VCD 25</td>
<td>VCDR 20</td>
<td>ETOG2</td>
</tr>
<tr>
<td>Driveways, pavements, car parks, stairs laid directly on the ground</td>
<td>200-300 [W/m²]</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>300-400 [W/m²]</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>>400 [W/m²]</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Loading ramps, bridges, overpasses, stairs exposed to wind operation from below</td>
<td>250-300 [W/m²]</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>300-400 [W/m²]</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>>400 [W/m²]</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Linear drainage</td>
<td>25-33 [W/m]</td>
<td>–</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gutters</td>
<td>20-60 [W/m]</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Downpipes</td>
<td>20-40 [W/m]</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Roof troughs</td>
<td>200-300 [W/m²]</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Roof edges</td>
<td>150-250 [W/m²]</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Roof edges covered with bituminous materials</td>
<td>150-250 [W/m²]</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Roof area extending beyond the building outline</td>
<td>250-400 [W/m²]</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

Self-regulating Heating Cables:
- SelfTec® PRO 33
- SnowTec®
- TuffTec™

Constant wattage Heating Cables:
- VC 20
- VCD 25
- VCDR 20

Product Catalogue page 115
7. Pipe and Pipeline Heating

7.1 General Information
These heating systems are used for:

1. Preventing frozen
 - Water fixtures
 - Sewage systems
 - Sprinkler systems
 - Hydrants
 - Air conditioning and ventilating pipe systems

2. Maintaining required temperatures in
 - Hot water pipelines
 - Industrial pipelines containing highly dense liquids

All metal (steel, copper, iron) and plastic pipes and tubes can be heated. Cables can be installed outdoors and indoor buildings, as well as in the ground.
7.2 Heating Cable Selection

Pipes and pipelines can be heated with heating cables of appropriate lengths, terminated with "cold tail" power cables, ready for installation, or self-regulating heating cables on spools, which can be adjusted on site to the pipeline length. Self-regulating heating cables require the cable termination and connection with cold tails. Heating cables can be of constant wattage or self-regulating.

7.2.1 Constant Wattage Cables

- The ELEKTRA VCD10 single-side powered heating cables.
- The ELEKTRA VC10 double-side powered heating cables.
- The ELEKTRA FreezeTec® with built-in thermostats heating cables.

The ELEKTRA VC/VCD10 heating cables are fixed-powered at 10W/m and are available as ready-to-install units terminated with "cold tail" power supply cables.

While planning the installation's design, it is necessary to match the required cable lengths with the available ones. While planning the ELEKTRA VC10 it is also crucial to account for the necessity of connecting both cold tails to the installation box. The ELEKTRA VC/VCD10 cable installations require the application of temperature controllers.

The ELEKTRA FreezeTec® heating cables are ready-to-install units including the heating cable powered at 12W/m with a thermostat built-in at one end. The other end is terminated with a 1.5m long three-core power supply cable, with a hermetically sealed plug. The thermostat will switch on the cable in the ambient temperature of +3°C and switch it off at +10°C.

7.2.2 Self-regulating Cables

Self-regulating cables consist of two copper cores in parallel, connected with a core of crosslinked polymer with the addition of graphite. The core is a self-regulating heating element with the resistance value depending on the ambient temperature. The lower the ambient temperature, the higher number of conducting paths, which means the lower electrical resistance value, causing the increased electrical current flow and correspondingly the increased heat generation.

The higher the temperature, the more loose the structure becomes (the carbon particles repel one another), which - in turn - signifies the breaking of conductive paths, the increase in resistance, and ultimately the decreased current flow with associated decreased heat generation. Thanks to the above feature, the cables increase their heating power with the decrease of the temperature in the heated system, and correspondingly decrease the power when the temperature goes up.

As power fluctuations occur only in the spots of the ambient temperature change and do not influence the power value in the remaining part of the cables, the self-regulating cables are in no danger of overheating, and that is why they can touch or cross freely.
Thanks to their properties, the cables can be cut and mounted into segments of required lengths. The only restriction is the maximum permissible length of a single segment (see table).

Depending on the type of installation, various kinds of the self-regulating cables can be applied, with different heating power characteristics in the function of temperature, and various properties of the insulating and sheath materials.

It is necessary to bear in mind that, even though the cables possess self-regulating properties, they continue to operate and consequently consume some amount of electricity in the ambient temperatures above 0°C.

It is therefore recommended to apply a controlling device, in order to eliminate the unnecessary power consumption in the temperature conditions when operating heating is not required.
For protection of self-regulating heating cables, it is recommended to use miniature circuit breakers with type C characteristics. Because of the inrush current, which can significantly exceed the nominal current value, max. lengths of the heating circuits should comply with the lengths given in the table. The values have been assessed for the min. turn-on temperature.

<table>
<thead>
<tr>
<th>Type/power output (10°C)</th>
<th>SelfTec® DW 10 W/m</th>
<th>SelfTec® DW F 16 W/m</th>
<th>SelfTec® PRO 10 W/m</th>
<th>SelfTec® PRO 20 W/m</th>
<th>SelfTec® PRO 33 W/m</th>
<th>SelfTec® PRO TC 30 W/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>230 V – 50/60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External dimension of cable</td>
<td>~ 7x10mm</td>
<td>~ 6x9mm</td>
<td>~ 7x11mm</td>
<td>~ 7x13mm</td>
<td>~ 6x13.5mm</td>
<td></td>
</tr>
<tr>
<td>Min. installation temperature</td>
<td>-25°C</td>
<td>-30°C</td>
<td>-50°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. working temperature</td>
<td>65°C</td>
<td></td>
<td></td>
<td>100°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. exposure temperature</td>
<td>65°C</td>
<td></td>
<td>85°C</td>
<td>135°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of heating cable</td>
<td>Self-regulating, conductor screen, single-side power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductor</td>
<td>tin-coated copper 0.6mm²</td>
<td>tin-coated copper 1.1mm²</td>
<td>nickel-coated copper 1.3mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>Modified polyolefin</td>
<td></td>
<td></td>
<td>XLEVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer sheath</td>
<td>double-layer, halogen free polyolefin + external LDPE, certified for drinking water applications</td>
<td>single-layer, fluoropolymer, certified for drinking water applications</td>
<td>UV resistant, halogen free polyolefin</td>
<td>HFFR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. bending radius</td>
<td>3.5 D</td>
<td></td>
<td>6 D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Min. installation temperature</th>
<th>SelfTec® DW (F) 10 W/m</th>
<th>SelfTec® DW F (DF) 16 W/m</th>
<th>SelfTec® PRO 10 W/m</th>
<th>SelfTec® PRO 20 W/m</th>
<th>SelfTec® PRO 33 W/m</th>
<th>SelfTec® PRO TC 30 W/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>turn-on temperature</td>
<td>-25°C</td>
<td>-30°C</td>
<td>-50°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20°C</td>
<td>75 110 55 75 85 125 180</td>
<td>45 65 90 120 50 65 85 100</td>
<td>69 91 103 103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15°C</td>
<td>80 115 60 80 100 145 190</td>
<td>50 75 105 125 55 70 90 105</td>
<td>73 94 103 103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°C</td>
<td>95 120 70 90 115 170 205</td>
<td>60 90 120 135 60 75 95 110</td>
<td>80 100 106 106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+10°C</td>
<td>100 125 80 100 130 205 205</td>
<td>80 110 135 – 70 70 110 120</td>
<td>96 109 109 109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°C in ice water</td>
<td>55 65 40 55 – – 40 55 70 85</td>
<td>40 55 70 90 – – – – – –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max. length of the heating circuits as related to turn-on temperature.
The advantages of the self-regulating cables:

• They can be cut on site of the construction into segments of appropriate lengths (the maximum permissible length values are given in table). This feature facilitates the selection of the required self-regulating cable's length for the application to be heated while planning the system, as well as during the installation process.
• They can cross.
• The ambient temperature's drop will cause the automatic increase of the cable's heating power.
• They allow the construction of max. 3-5m long branches with no necessity of creating additional circuits.

After the self-regulating cables are cut to the required length, it is necessary to terminate them and connect to the cold tail power cable, using the joint set.

The ELEKTRA SelfTec®16 self-regulating heating cables are ready-to-install units of specific lengths, terminated with plugs. They are designed especially for do-it-yourself installation, without the necessity of applying the services of a professional installer.

Multi-purpose, self-regulating SelfTec® DW (f) heating cables, for applications both outside and inside of pipes. Installation on pipelines is similar to installation of the SelfTec® PRO cables. For installation method for applications inside of pipelines – see chapter 7.5.3.

It is crucial to carefully and tightly terminate the cable and then to connect the self-regulating cable with the cold tail. The joints should be executed with the EC-PRO joint set.

ELEKTRA SelfTec®PRO self-regulating heating cables have been especially designed for protection of extended sanitary installations, e.g. pipelines with branching, flanges, valves and (depending on the output) gutters, downpipes and linear drainage. ELEKTRA SelfTec® PRO TC heating cables are intended for applications in systems where - temporarily or permanently - increased temperatures of even 110°C may occur, e.g. in process heat pipelines, central heating pipelines, or to maintain fixed temperature in fat drainage pipelines. For installation by qualified installers only.

7.3 Planning

Applying the heating cables on pipes for the purpose of maintaining the steady agent temperature, requires individual planning every time it is to be done. The proper selection of the heating cable means the calculation of the heat loss in the particular pipeline and in specific conditions. It is necessary to find out in advance:
• the pipeline's diameter and material.
• the thickness and type of the thermal insulation in use.
• the contents type and flow values.
• the temperatures required to maintain the contents temperature, together with possible minimum ambient temperatures which could occur in the valid geographical location.

Reaching the required heating power value is ensured by the carefully considered and proper selection of the heating cables' types, together with the temperature controlling system.

These applications would need the constant wattage or self-regulating heating cables.

When selecting a heating cable, the following principles are suggested for consideration:
• for simple systems of the max. 50mm diameter use:
 - the ELEKTRA FreezeTec® or SelfTec® ready-to-install units terminated with hermetically sealed plugs.
 - constant wattage ELEKTRA VC/VCD cables.
• for extended pipelines use the ELEKTRA VC/VCD constant wattage heating cables or self-regulating ELEKTRA SelfTec® PRO heating cables.
• for extended pipelines with branching, valves and flanges use self-regulating ELEKTRA SelfTec® PRO heating cables.
• for anti-frost protection of process heat or central heating pipelines, where during normal operation the temperature might exceed 95°C, SelfTec® PRO TC heating cables are recommended, for which the maximum operating temperature is 110°C (maximum exposure temperature in the off-mode is 130°C).
7.3.1 Heat Loss Calculation

A heat loss of 1m of pipeline can be calculated through the following formula:

\[
Q = \frac{2 \pi \lambda E (\theta_l - \theta_a)}{\ln \left(1 + \frac{2D_{ins}}{D_e} \right)} \text{ [W/m]}
\]

where:

- \(Q \) – heat loss [W/m]
- \(\theta_l \) – required temperature maintained by the heating cable [°C]
- \(\theta_a \) – min. ambient temperature [°C]
- \(D_e \) – external pipeline diameter [mm]
- \(D_{ins} \) – insulation thickness [mm]
- \(E \) – safety margin
- \(\lambda \) – thermal conductivity of insulation [W/mK]

Example: Heat loss calculation for the supply water pipeline, laid outdoors, diameter: 2 inches, length: 6 m, polyurethane foam heat insulation.

Data:
- \(D_e = 50 \) mm external pipeline diameter
- \(D_{ins} = 25 \) mm – insulation thickness

The following assumptions were made:
- \(\theta_l = +5 \)°C - required temperature inside the pipeline, protecting water against freezing;
- \(\theta_a = -25 \)°C - min. outdoor temperature in the current climate zone;
- \(E = 1.1 \) - safety margin.

For easier calculations, the logarithmic diagram has been placed below, for the required \(l \), value readout.

The diagram gives us the following readout: \(l, 2.0 = 0.69 \).

After including the value, the above formula gives the result: 10.5 W/m. Required heat load for the pipe: 6 m x 10.5 W/m = 63 W.

\[
Q = \frac{2 \pi \times 0.035 \times 1.1 \times (5 - (-25))}{\ln \left(1 + \frac{2 \times 25}{50} \right)} \text{ [W/m]}
\]

\[
Q = \frac{2 \pi \times 0.035 \times 1.1 \times 30}{\ln 2.0} = 10.5 \text{ [W/m]}
\]

Thermal Conductivity

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity at (+10°C) [W/mK]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass wool</td>
<td>0.036</td>
</tr>
<tr>
<td>Mineral wool</td>
<td>0.038</td>
</tr>
<tr>
<td>Polyurethane foam</td>
<td>0.023</td>
</tr>
<tr>
<td>Rubber foam</td>
<td>0.035</td>
</tr>
<tr>
<td>Polyethylene foam</td>
<td>0.037</td>
</tr>
</tbody>
</table>
An appropriate heating cable can be chosen once the heat losses have been calculated. The power of the heating cable must be at least equal to the heat loss in the pipe. To protect the pipe described in the example, the following cables can be chosen from:

1. The ELEKTRA SelfTec® 16/6 self-regulating heating cable (6m long 96W), laid individually along the pipeline.
2. The ELEKTRA FreezeTec® 12/7 heating cable (7m long 72W), laid spirally along the pipeline.
3. The ELEKTRA VCD 10/70 heating =cable (7m long 70W), laid spirally along the pipeline.
4. The ELEKTRA SelfTec®PRO 10 self-regulating heating cable (6.3m long, 10 x 6.3 = 63W), laid along the pipeline.

The first three variants feature some power surplus, but are simple solutions, using the ready-to-install units.

- **Variant 1 - ELEKTRA SelfTec®**: The cable terminated with a plug. Simple mounting, for do-it-yourself installation, requires manual control of the cable, i.e. in the ambient temperatures above 0°C it is necessary to switch the system off manually.
- **Variant 2 - ELEKTRA FreezeTec®**: The cable terminated with a plug at one end and with a thermostat at the other end. Simple mounting, for do-it-yourself installation, no additional temperature controller required.
- **Variant 3 - ELEKTRA VCD**: The cable terminated with a joint set. Simple mounting, for do-it-

In case of the Variant 1 selection, with the large power surplus, it is possible to consider the decrease of the insulation thickness (in this case from 25 to 16 mm).

\[
Q = \frac{2 \pi \times 0.035 \times 1.1 \times (5 - (-25))}{1 + \frac{2 \times 16}{50}} = 14.7 \text{[W/m]}
\]

After the insulation thickness has been decreased, the required pipe heat load:

\[
6 \text{ m} \times 14.7 \text{ W/m} = 88.2 \text{ W}
\]

For heat loss calculation, the ready table can be used (polyurethane foam insulation, temperature difference \(\theta_1 - \theta_c = 30°C\)).

<table>
<thead>
<tr>
<th>Diameter of Pipe</th>
<th>(\Delta T) [°C]</th>
<th>(\Delta T) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Dependence of heat losses on pipe diameter and thickness of thermal insulation

<table>
<thead>
<tr>
<th>Diameter of Pipe</th>
<th>(\Delta T) [°C]</th>
<th>(\Delta T) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Example Calculation

- **Variant 4 - ELEKTRA SelfTec®PRO 10**: Allow for the precise selection of the cable length, and consequently matching the power required and obtained.
 - Professional mounting, requiring the cable's termination and connection to the cold tail power cable. Temperature controller required.
 - Usually utilised in larger systems, in need of the self-regulating properties.

Pipe and Pipeline Heating

<table>
<thead>
<tr>
<th>Thickness of Insulation</th>
<th>Diameter of Pipe</th>
<th>(\Delta T) [°C]</th>
<th>(\Delta T) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>10</td>
<td>5.8</td>
<td>8.6</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>5.8</td>
<td>8.6</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>5.8</td>
<td>8.6</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>5.8</td>
<td>8.6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>5.8</td>
<td>8.6</td>
</tr>
</tbody>
</table>
The formula given above can be applied as a general estimator of heat loss in an insulated pipeline. Still, with detailed heat loss calculation, it is crucial to account for numerous additional parameters such as: wind velocity, exposure of pipeline, changes occurring in the surroundings, etc. It is by far the easiest way to use the ready tables where heat loss values are the function of the pipe’s diameter, thermal insulation’s thickness and temperature difference. Heat loss values are given in W/m² for mineral wool insulated pipelines, placed outdoors and wind-exposed. The table values account for a 30% safety coefficient.

The given heat loss values refer only to the pipelines themselves. In practice, while proceeding with the installation, it is necessary to additionally account for the heat loss occurring e.g. on valves, flanges, pipeline fastenings, etc. and apply the appropriate length of the cable which will cover the heat loss in such spots.

<table>
<thead>
<tr>
<th>ΔT [°C]</th>
<th>½</th>
<th>¼</th>
<th>1</th>
<th>¹/₁₀</th>
<th>½</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>7.3</td>
<td>9.0</td>
<td>10.6</td>
<td>12.8</td>
<td>15.3</td>
<td>18.4</td>
<td>23.1</td>
<td>27.8</td>
<td>34.0</td>
<td>49.6</td>
<td>65.1</td>
<td>80.7</td>
</tr>
<tr>
<td>20</td>
<td>11.0</td>
<td>13.4</td>
<td>15.8</td>
<td>19.2</td>
<td>23.0</td>
<td>27.7</td>
<td>34.7</td>
<td>41.7</td>
<td>51.1</td>
<td>74.4</td>
<td>97.7</td>
<td>121.0</td>
</tr>
<tr>
<td>25</td>
<td>14.7</td>
<td>17.9</td>
<td>21.1</td>
<td>25.6</td>
<td>30.6</td>
<td>36.9</td>
<td>46.3</td>
<td>55.6</td>
<td>68.1</td>
<td>99.2</td>
<td>130.3</td>
<td>161.3</td>
</tr>
<tr>
<td>30</td>
<td>18.3</td>
<td>22.4</td>
<td>26.4</td>
<td>32.0</td>
<td>38.3</td>
<td>46.1</td>
<td>57.9</td>
<td>69.5</td>
<td>85.1</td>
<td>124.0</td>
<td>162.8</td>
<td>201.7</td>
</tr>
<tr>
<td>35</td>
<td>22.0</td>
<td>26.9</td>
<td>31.7</td>
<td>38.4</td>
<td>45.9</td>
<td>55.3</td>
<td>69.4</td>
<td>83.5</td>
<td>102.1</td>
<td>148.8</td>
<td>195.4</td>
<td>242.0</td>
</tr>
<tr>
<td>40</td>
<td>26.7</td>
<td>32.0</td>
<td>38.1</td>
<td>45.7</td>
<td>53.9</td>
<td>66.1</td>
<td>81.7</td>
<td>99.5</td>
<td>124.0</td>
<td>175.4</td>
<td>226.8</td>
<td>278.2</td>
</tr>
<tr>
<td>45</td>
<td>31.4</td>
<td>38.0</td>
<td>45.0</td>
<td>52.9</td>
<td>62.8</td>
<td>78.6</td>
<td>97.7</td>
<td>119.4</td>
<td>148.0</td>
<td>210.5</td>
<td>262.0</td>
<td>313.5</td>
</tr>
<tr>
<td>50</td>
<td>36.1</td>
<td>43.6</td>
<td>51.0</td>
<td>59.4</td>
<td>71.1</td>
<td>88.4</td>
<td>109.7</td>
<td>135.0</td>
<td>166.0</td>
<td>234.0</td>
<td>292.0</td>
<td>350.0</td>
</tr>
<tr>
<td>55</td>
<td>40.8</td>
<td>49.3</td>
<td>57.3</td>
<td>66.0</td>
<td>78.5</td>
<td>95.5</td>
<td>117.3</td>
<td>143.0</td>
<td>175.0</td>
<td>248.0</td>
<td>305.0</td>
<td>362.0</td>
</tr>
<tr>
<td>60</td>
<td>45.5</td>
<td>55.0</td>
<td>64.1</td>
<td>74.0</td>
<td>87.5</td>
<td>105.5</td>
<td>129.7</td>
<td>158.0</td>
<td>190.0</td>
<td>271.0</td>
<td>329.0</td>
<td>387.0</td>
</tr>
</tbody>
</table>

Heat loss as the function of the pipe’s diameter and thermal insulation’s thickness

<table>
<thead>
<tr>
<th>ΔT [°C]</th>
<th>½</th>
<th>¼</th>
<th>1</th>
<th>¹/₁₀</th>
<th>½</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>7.3</td>
<td>9.0</td>
<td>10.6</td>
<td>12.8</td>
<td>15.3</td>
<td>18.4</td>
<td>23.1</td>
<td>27.8</td>
<td>34.0</td>
<td>49.6</td>
<td>65.1</td>
<td>80.7</td>
</tr>
<tr>
<td>20</td>
<td>11.0</td>
<td>13.4</td>
<td>15.8</td>
<td>19.2</td>
<td>23.0</td>
<td>27.7</td>
<td>34.7</td>
<td>41.7</td>
<td>51.1</td>
<td>74.4</td>
<td>97.7</td>
<td>121.0</td>
</tr>
<tr>
<td>25</td>
<td>14.7</td>
<td>17.9</td>
<td>21.1</td>
<td>25.6</td>
<td>30.6</td>
<td>36.9</td>
<td>46.3</td>
<td>55.6</td>
<td>68.1</td>
<td>99.2</td>
<td>130.3</td>
<td>161.3</td>
</tr>
<tr>
<td>30</td>
<td>18.3</td>
<td>22.4</td>
<td>26.4</td>
<td>32.0</td>
<td>38.3</td>
<td>46.1</td>
<td>57.9</td>
<td>69.5</td>
<td>85.1</td>
<td>124.0</td>
<td>162.8</td>
<td>201.7</td>
</tr>
<tr>
<td>35</td>
<td>22.0</td>
<td>26.9</td>
<td>31.7</td>
<td>38.4</td>
<td>45.9</td>
<td>55.3</td>
<td>69.4</td>
<td>83.5</td>
<td>102.1</td>
<td>148.8</td>
<td>195.4</td>
<td>242.0</td>
</tr>
<tr>
<td>40</td>
<td>26.7</td>
<td>32.0</td>
<td>38.1</td>
<td>45.7</td>
<td>53.9</td>
<td>66.1</td>
<td>81.7</td>
<td>97.7</td>
<td>119.4</td>
<td>175.4</td>
<td>226.8</td>
<td>278.2</td>
</tr>
<tr>
<td>45</td>
<td>31.4</td>
<td>38.0</td>
<td>45.0</td>
<td>52.9</td>
<td>71.1</td>
<td>88.4</td>
<td>109.7</td>
<td>135.0</td>
<td>166.0</td>
<td>248.0</td>
<td>305.0</td>
<td>362.0</td>
</tr>
<tr>
<td>50</td>
<td>36.1</td>
<td>43.6</td>
<td>51.0</td>
<td>59.4</td>
<td>87.5</td>
<td>95.5</td>
<td>117.3</td>
<td>143.0</td>
<td>175.0</td>
<td>248.0</td>
<td>305.0</td>
<td>362.0</td>
</tr>
<tr>
<td>55</td>
<td>40.8</td>
<td>49.3</td>
<td>57.3</td>
<td>66.0</td>
<td>78.5</td>
<td>95.5</td>
<td>129.7</td>
<td>158.0</td>
<td>190.0</td>
<td>271.0</td>
<td>329.0</td>
<td>387.0</td>
</tr>
<tr>
<td>60</td>
<td>45.5</td>
<td>55.0</td>
<td>64.1</td>
<td>74.0</td>
<td>87.5</td>
<td>105.5</td>
<td>129.7</td>
<td>158.0</td>
<td>190.0</td>
<td>271.0</td>
<td>329.0</td>
<td>387.0</td>
</tr>
</tbody>
</table>
7.4 Project Data Form
Basic information necessary for the proper design of a heating system for an extended pipeline is given in the presented form. If the T_o or θ_{max} values are unavailable, the relevant form fields can be left blank.

![Diagram of heating system components]

Legend:
A – ELEKTRA SelfTec® self-regulating heating cable
B – temperature controller
C – installation box
D – bracket for installation box
E – bracket for temperature controller
F – under insulation entry
G – installation tape
H – caution label
“I – aluminium tape
7.5 Installation

7.5.1 Constant Wattage Cables

Heating cables can be installed individually along one side, several times along one side or be spiraled around the pipe. The manner in which the cable is installed is dependant on the pipe diameter and the number of any additional pipes that branch out. Cables should be fixed to the pipe every 300mm with the use of self-adhesive, high temperature resistant tape (i.e. glass yarn). Do not use wire or cable bands, as they may cause damage to the cable. After the cable has been set into place, the entire length of the cable should be covered by self-adhesive aluminum tape (minimum thickness: 0.6mm, minimum width: 50mm), it helps ensure that the heat is transferred in to the pipeline. The aluminum tape provides a barrier between the heating cable and the thermal insulation and protects the cable from overheating.

Pipes made from synthetic materials must be covered with aluminum tape before the heating cables are installed. It improves the performance and protects the pipe from overheating.

In case of self-regulating heating cables, aluminium tape fixed on the cable installed on the pipeline is a recommendation only, not a requirement.

During the installation, it is necessary to remember that the cables should not touch or cross, be near any sharp edges, or be excessively bent (the maximum bending radius is \(3.5 \times d\), where \(d\) = diameter of the heating cable).

The temperature sensor should be located between adjacent cables, and if possible, in the upper part of the pipe. The terminal of the temperature sensor should be fixed to the pipe and tightly bound by tape.

The cold tails of the heating cables must be connected to a power supply with appropriate circuit protection.

The joint between the heating cable and cold tail must be attached to the pipe.
Cable spacing can be assessed from the following formula:

\[
p = \frac{\pi (D_e + d) L_p}{\sqrt{L_{HC} - L_p^2}}
\]

where:
- \(D_e\) – external diameter of the pipe
- \(d\) – dimension of the heating cable
- \(L_{HC}\) – length of the heating cable
- \(L_p\) – length of the pipe

Heating cables can be installed individually along one side, several times along one side or be spiraled around the pipe.

Example of cable installation at bends and elbows
Example of cable installation at valves and flanges

ELEKTRA FreezeTec® heating cable with built-in thermostat
7.5.2 Self-regulating Cables

The pipeline mounting of the self-regulating cables proceeds in the same way as for the constant wattage ones, one difference being the fact that - unlike the latter ones - they can cross or touch freely, which greatly facilitates installation on valves and flanges. Moreover, the self-regulating cables can be cut into segments of any required length, precisely matching the length of the pipeline. When laying the self-regulating cables, it is necessary to leave the surplus length of the cable for the cold tail connection -approximately 0.5m.

Power supply for the self-regulating cables can be provided in one of the following ways:

- Via the cold tail power cable - the connecting joint should be positioned on the heated pipeline, under the insulation. The EC-PRO joint set should be used to terminate the self-regulating heating cable and connect it with the power supply.

- Via supplying the heating cable directly to the junction box KF 0404-PRO, using the joint set ECM 25-PRO.

Connection of a self-regulating heating cable can be undertaken in either of the two following ways:

- by connecting cables using the power supply cable and two connecting joints positioned on the heated pipeline, under the insulation. S-TWIN-PRO twin splice connection set should be applied for this type of connection;

- by feeding both heating cables into the KF 0404-PRO junction box using two ECM 25-PRO joint sets. This type of connection of heating cables allows for fast inspection of the connecting spot, as the junction box should be mounted on the BKF-PRO mounting bracket, over the insulation.
ECM25-PRO joint set

S-TWIN-PRO twin splice connection

EC-PRO joint set

Junction box made of halogen-free thermoplast with IP66 protection index

BT-PRO mounting bracket for the UTR 60-PRO controller

BKF-PRO mounting bracket for the KF 0404-PRO installation box

CL-PRO caution label

EK-PRO Insulation entry kit for self-regulating heating cables

CAUTION! ELECTRIC HEATING
7.5.3 Self-regulating Cables Inside of Pipes

Frost protection of water pipelines can be achieved by placing heating cables inside pipelines. This method of installation enables frost protection of the pipelines already in use, without the need of removing the insulation, or wall drilling. This heating cable installation method is also possible for the underground pipelines.

Such heating method can be realized with the ELEKTRA SelfTec® DW self-regulating heating cables, which have double-layer sheath made of halogen-free polyolefins and the external LDPE (Low Density Polyethylene) sheath approved for drinking water applications and certified for placement inside drinking water pipelines, as well as ELEKTRA SelfTec® DW (F) heating cables with a single-layer fluoropolymer sheath.

Power supply protected by an RCD ensures proper anti-shock protection.

SelfTec® DW (F) heating cables are powered at 10 or 16 W/m at the temperature of +10°C (see chapter 7.2.2).

The cable power has been adjusted to account for water heat capacity. Maximum heating circuit length in water – 65 m (SelfTec® DW (F) 10), 55 m (SelfTec® DW F 16).

The hydraulic T-joint needs to be positioned on the pipeline, and the heating cable itself should be entered into the pipeline with the lead-through.
7.6 Control

When heating a pipeline with the constant resistance cables (ELEKTRA VC and VCD), there should be a controller equipped with an external temperature sensor. The recommended controllers should be designed for DIN rail mounting, e.g. ETI-1544, ETN4-1999 or ETV-1991.

Self-regulating heating cables require a temperature controller to reduce the operating costs. When heating a pipeline with constant wattage heating cables (ELEKTRA VC and VCD), there should be a controller equipped with an external temperature sensor. The recommended controllers should be designed for DIN rail mounting, e.g. ETI-1544, ETN4-1999 or ETV-1991. In temperatures above 0°C, self-regulating cables still consume electrical energy (see the chart of the self-regulating cables' power as the temperature function, chapter 7.2.2).

In systems with plastic pipes, using temperature controllers is obligatory.

The ELEKTRA SelfTec® self-regulating cables do not require a cooperating temperature controller, but it necessary to switch the system off manually when the ambient temperature exceeds 0°C.

ELEKTRA FreezeTec® heating cables do not require an additional controller, as they have a built-in thermostat.

ELEKTRA ETV

DIN-rail mounting

Equipped with an external temperature sensor. Quite small dimensions (2 modules). LED indicates if the system is turned on.

ELEKTRA ETN4

DIN-rail mounting

Temperature controller supporting two temperature sensors, including a limiting one. Large backlit display presents the operating parameters of the controller. Adjustable hysteresis allows to define precision of the temperature measurements. Equipped with the on/off switch.

In particular cases like e.g. greasy pipes or when the inside pipe temperature exceeds +70°C for instance while washing or rinsing, the ETI-1552 with a special heat resistant temperature sensor (operational temperature range between -40°C and +120°C) should be used.

ETV-1991 temperature controller and temperature sensor

ETI-1544 temperature controller and temperature sensor

ETN4-1999 temperature controller and temperature sensor

ETI-1522 temperature controller and special temperature sensor
ELEKTRA TDR 4020-PRO
DIN-rail mounting
Temperature controller equipped with the temperature sensor. The controller gives the possibility to set two temperature levels and to adjust the hysteresis which enables the estimation of the temperature measurement’s precision. It allows to connect the BusAdapter module with the RS-485 bus or the Unicard with the USB port. The controller cooperates with BMS systems via ModBus or Televis protocols, or as an analog system, via a relay operating in the alarm mode. The display shows simultaneously the current temperature of the sensor, set temperature, status of the relays and possible alarm switch-on.

ELEKTRA 4020-PRO temperature controller (equipped with temperature sensor)

Connection diagram of the ELEKTRA UTR-PRO temperature controller with an auxiliary contactor

UTR 60-PRO
equipped with temperature sensor
Surface mounting
Temperature controller designed for pipe heating systems utilising the SelfTec®PRO 10, 20 and 33 self-regulating heating cables. Equipped with a temperature sensor for on-pipe mounting, with the operational ambient temperature between -40°C and +120°C. Adjustable hysteresis allows to set-up the accuracy of the temperature measurement. LED diodes indicate system’s operation.

Alternatively, auxiliary contacts can be mounted on residual current devices to send heating circuit breakdown signals to BMS.
7.7 Product Selection Guide

Heating Cables

<table>
<thead>
<tr>
<th>Application</th>
<th>Systems</th>
<th>Cable output (Q)</th>
<th>Pipe material</th>
<th>Cable positioning</th>
<th>Pipe diameter [mm]</th>
<th>VC10</th>
<th>VCD10</th>
<th>FreezTec®</th>
<th>SelfTec® DW 10 (F)</th>
<th>SelfTec® 16</th>
<th>SelfTec® PRO 10</th>
<th>SelfTec® PRO 20</th>
<th>SelfTec® PRO 33</th>
<th>SelfTec® PRO TC 30</th>
<th>Coefficient of arrangement *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection of pipelines against freezing</td>
<td>Hydrant, sprinkling, cold water, rain drain, sanitary sewage</td>
<td>Steel</td>
<td>Outside the pipe</td>
<td><50</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50-150</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>150</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plastic</td>
<td>Inside the pipe</td>
<td><50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50-150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>150</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inside the pipe</td>
<td><50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50-150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Central heating</td>
<td>Steel / Plastic</td>
<td>Outside the pipe</td>
<td><50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50-150</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>150</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Process heat</td>
<td>Steel</td>
<td>Outside the pipe</td>
<td><50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+**</td>
<td>+**</td>
<td>+**</td>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50-150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+**</td>
<td>+**</td>
<td>+**</td>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+**</td>
<td>+**</td>
<td>+**</td>
<td>+</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fat sewage system</td>
<td>Steel</td>
<td></td>
<td><50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50-150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Steel</td>
<td></td>
<td><50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50-150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

* minimal number of arrangements of a cable's straight segment, securing the even heat distribution inside a pipeline, independent of the heat demand

** max. working temperature 65°C

Product Catalogue page 115

Pipe and Pipeline Heating
8. Special Frost Protection Systems

8.1 Ground and Foundation Protection for Cold Stores

Long periods of low temperatures in cold stores can cause frost to penetrate building foundations. This causes floor deformations and damages foundations. Fortunately, this can be prevented with floor heating systems.

Depending on the temperature inside a cold store and the thickness and the type of thermal insulation, the heating system power can range from 15-30W/m².

The power rating of the heating cables cannot exceed 10W/m and the distance between cables cannot exceed 500mm.

For ground and foundation frost protection, the following cables may be used:

- Single-side supplied ELEKTRA VCD10 heating cable
- Double-side supplied ELEKTRA VC10 heating cable

8.1.1 Floor Construction

Heating cables should be installed under the thermal insulation of the floor to stop freeze penetration.

The cables should be installed:

- Directly in the concrete
- In a layer of sand above the concrete

If installing directly in the concrete, it is important that the expansion joints cannot be crossed by heating cables.

The number of cables should be equal to the number of areas created by expansion joints.
8.1.2 Installation
Installing a heating system under cold stores should be done in the same manner as regular floor heating (see 2.2.3).

For emergency reasons, it is recommended that two parallel systems are installed (primary and stand-by) because it will not be possible to access the heating system, once the cold store is operating.
8.2 Pouring Concrete

Short, tight construction deadlines force contractors to execute construction works regardless of current weather conditions. When executing concrete works or pouring concrete in temperatures below 0°C, it becomes vital to protect freshly poured concrete mixtures against freezing to ensure optimal conditions for the chemical reactions between cement and water, which constitute a crucial factor influencing resulting mechanical strength of concrete.

Temperatures of concrete surfaces should not drop below 0°C until the mechanical strength of concrete has reached a min. value of 5 MPa, which provides concrete resistance against freezing. After the required mechanical strength has been reached, the concrete – even frozen – will not reduce its ultimate mechanical strength. The optimal value of ultimate mechanical strength, however, will be reached later, as in the freezing period, the increase in mechanical strength is hindered.

ELEKTRA BET heating cables are installed when not only protection against freezing becomes crucial, but also when a contractor is required the mechanical strength of the concrete to be achieved in the optimum time.

8.2.1 Design Stage

Freezing of concrete elements in temperatures below 0°C begins on their surfaces. When warming up concrete mixtures curing in temperatures below 0°C, it is required to assess the necessary value of heating power per m² of the concrete area. The required heating power depends on:

- application of covers, such as tarpaulin, foil or non-woven fabrics to shelter formwork or directly concrete mixtures, protecting concrete surface against wind,
- application of thermal protection with insulation material preventing heat loss from concrete surface,
- the material formwork is made of (plywood, steel).

The place especially vulnerable to freezing in case of concrete mixture is the contact surface touching the previously poured concrete element. In such places, decrease the cable spacing recommended in the table by half.

Suggested heating power of the heating cables per m² of the heated surface of a concrete element

<table>
<thead>
<tr>
<th>Type of formwork</th>
<th>Method of protection of the concrete mixture surface against heat loss</th>
<th>Specific heating power [W/m²]</th>
<th>Spacing between cables [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>plywood</td>
<td>insulating material 50mm thick, covered with tarpaulin or non-woven fabric</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>steel</td>
<td>insulating material 50mm thick, covered with tarpaulin or non-woven fabric</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>plywood</td>
<td>no protection*</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>steel</td>
<td>no protection*</td>
<td>200</td>
<td>20</td>
</tr>
</tbody>
</table>

*For forecasts of wind velocity exceeding 6 m/s by temperatures below -10°C, it is required to apply covers such as tarpaulin, foil or non-woven fabrics, until concretes have reached their optimal mechanical strength protecting against freezing (3-4 days).
Negative influence of frozen concrete elements where concrete mixtures will be poured can be limited by:

- application of warm concrete mixtures of min. temperature +15°C,
- spot unfreezing of the frozen concrete element with hot air.

Heating cables in concrete elements should be placed symmetrically (if possible). It influences positively the even temperature distribution, and therefore does not cause appearance of stresses.

Pouring concrete mixtures in temperatures below 0°C is only possible for warm concrete mixtures.

Durability against freezing of concrete mixtures depends on:

- the class of cement (CEM) used for manufacturing concrete mixtures,
- when pouring concrete mixtures in poorly insulated formwork, it is recommended to apply Portland cement CEM 1 characterised by high hydration heat and providing optimal temperature to the fresh concrete,
- water/cement (w/c) ratio which should not exceed 0.5,
- application of anti-freezing additives (additives lowering freezing point of batched water).

Calculating the area of a concrete element

The area of a pole, beam or pillar to be heated should be calculated as their perimeter multiplied by their height (length).

In concrete walls, heating cables should be laid on both sides of the wall.

In ceilings with bottom reinforcement only, heating cables should be laid on bottom reinforcement, and the upper surface of the ceiling must be protected, at least with a cover. Reinforcement of ceiling, located on poles or concrete walls executed earlier – therefore significantly cooled down, are especially vulnerable to freezing. In such places it is recommended to lay heating cables with decreased spacing.

In ceilings thicker than 25 cm, also the upper part of the ceiling must be heated — if possible (upper ceiling reinforcement present), otherwise, it is necessary (except for the cover) to provide thermal insulation laid on the surface of the ceiling.
8.2.2 Installation
Attach ELEKTRA BET heating cables to stirrups, distribution bars or construction reinforcement. Maintain previously determined spacing between cables. The cables should be fixed so that the distance from the formwork surface is not lower than 25 mm.

Heating cables can cross with construction reinforcement, but must not be laid along reinforcement bars in the distance less than the required thickness of the lagging of reinforcement bars.

Installing heating cables in a concrete pillar

On a pole or beam the number of cables must not be lower than 4. The cables must be laid to maintain axial symmetry.

Laying heating cables in a ceiling based on an earlier executed concrete wall
8.2.3 Positioning of a Temperature Sensor

The temperature sensor's wire should be attached to reinforcement with cable ties.

The temperature sensor should be positioned as close as possible to the surface of the concrete element, between heating cables.

In ceilings where the heating cables are positioned on bottom reinforcement, the temperature sensor should be positioned directly under the ceiling's surface.

8.2.4 Operation

Warming concrete commences with setting the required temperature on the controller. Warming concrete mixtures should be already performed during the pouring process. Do not allow heated up concrete mixtures to cool down.

After concrete mixtures have cured, switch off the power supply and cut off the power supply conductors. The heating cables remain in concrete. The controllers can be reused.

Demounting of formwork should only be executed after the heating is completed and concrete elements gradually cooled down. Sudden cool down of an element might result in the increase of stresses in concrete.
8.3 Portable heating mats

8.3.1 ELEKTRA MMV

Problems occurring due to prolonged frost and snow can influence safety, building operations and house systems installation works, or early farming activities, therefore a solution is required providing immediate reaction.

ELEKTRA MMV heating mats have been developed as an answer to hindrances caused by harsh winter conditions.

ELEKTRA MMV heating mats are multifunctional, flexible, waterproof and frostproof. Their design principle is comfortable, efficient and multiple application, thus enabling continuation of works and avoidance of costly delays. Mats provide heat to objects located directly underneath, and this direct action means faster and more secure warm-up in comparison to conventional methods, such as burners or heaters positioned in tarpaulin tunnels or tents.

Heating with ELEKTRA MMV heating mats does not require any additional actions dedicated to either designing or selecting the heating system’s type, nor additional accessories. The mats are equipped with a thermal protection, as well as an IP44-rated plug, enabling mains connection through a power generator or building switchboard.

Yellow tint of the upper cover makes the mats visible from a distance, which is especially important when defreezing soil, stairs or passageways.

ELEKTRA MMV heating mats are dedicated to the following applications:
- ground works – to facilitate drilling works for filter systems for drinking water, as well as excavation works for plumbing systems, electrical and telecommunication systems,
- to remove icing from external surfaces such as: passageways, stairs, roof throughs or roof surfaces, technological process lines on external units of fan coils, chillers or heat pumps,
- installation works – to restore flexibility of cables on drums, facilitate unwinding, enable installation works on power cables or telecom cables, gardening and farming works – to support plant growth in soil, defreeze haylage in bales,
- protection against freezing – of water tanks, to protect storage tanks dedicated for animal feed/sand/road salt.
8.3.2 ELEKTRA MMR
Portable heating mats
ELEKTRA MMR heating mats will find application as a kind of heated anti-slip elastomer doormats facilitating snow melt, to be positioned out of the external door leading to residential or office buildings.

Grooved surface of heating mats contribute to increased safety, effective snow melt and water evaporation, owing to this the entrance surface is dry and provides good adhesion, and the snow does not block the entry door.

ELEKTRA MMR heating mats are manufactured of vulcanized rubber, thus featuring high mechanical resistance properties, as well as high resistance against attrition. They can be easily used as anti-slip heating mats dedicated to unheated workstations or operator workstations. This easy-to-implement solution will increase the overall workplace comfort and safety level. The mats are equipped with a 3m-long power supply conductor with an IP44-rated plug.

ELEKTRA MMR heating mat
8.4 Industrial Tanks

Heating cables are capable of maintaining required temperatures to prevent tanks of water, oils, chemicals, and other liquids from freezing and maintaining the required temperatures / consistency.

The cables can also be used to heat silos with grains, sugars, and other such items.

ELEKTRA VC/VCD heating cables cannot be installed on tanks where the cables can be exposed to greases, oils, or other chemicals and where there is a risk of the temperature reaching more than 90°C.

To choose an appropriate heating cable, it is important to determine the possible heat losses of the tank. Such losses are dependant on the tank size, type, thermal insulation, the required temperature, and the minimum outside temperature. The following formula can be used to calculate heat losses:

\[\phi = 1.25 \times A \times \Delta\theta / R \]

where:
- \(\phi \) – heat loss [W]
- \(A \) – total surface area of the tank [m²]
- \(\Delta\theta \) – temperature difference (liquid temperature versus outer temperature) [°C]
- \(R \) = \(d / \lambda \) [m²K / W]
- \(\lambda \) – heat resistance of thermal insulation
- \(\lambda \) – heat penetration of the thermal insulation factor [W/mK]
- \(d \) – thickness of the thermal insulation [m]
- 1.25 – safety margin

For tanks with foundations, heat losses from the underside of the tank should be taken into consideration. The exact heat loss per tank varies due to the variety of shapes (cylindrical, rectangular, and conical), the type of foundation (with legs or solid), and any additional equipment required (access opening, ladders, level indicators).
8.4.1 Installation
Cables should be fixed to the tank with ELEKTRA TME installation tapes. The heating cables should be entirely covered with aluminum tape – it improves performance and helps to transfer the heat directly to the tank.

In addition, the aluminum tape acts as a barrier between the heating cable and thermal insulation. It also prevents the cable from overheating.

It is important to remember that heating cables must not cross, touch, or be exposed to sharp edges.

The minimum bend radius of the cable is 3.5 x outer diameter of the cable.
8.5 Aerial Masts

Snow and ice deposits on satellite dishes, aerial masts, and antenna supports create an additional mechanical load, and in many cases, may damage the equipment. Installing heating cables effectively protects these structures from any such negative effects.

A single-side supplied ELEKTRA VCDR with a unit power of 20W/m are the most common cables for this sort of installation. The total installed capacity ranges from 200-300W/m².

Cables are laid on the external (convex) surface of satellite dishes. For aerial masts, the layout is dependant of the diameter of the structure. The heating cables can either spiral around the mast or be laid out in a vertical manner.

The cables are then attached with the use of self-adhesive AL foil, which helps to transfer heat from the cable directly to the structure.
8.6 Control

Heating in cold stores, on tanks and aerial masts, as well as heating up concrete mixtures, should be controlled by a DIN rail mounted temperature controller equipped with a temperature sensor. The sensor wire can be extended with a 2 x 1.5 mm² diameter installation cable.

In cold stores, due to specific operation conditions of the heating system, controllers with adjustable hysteresis are recommended – ELEKTRA ETN4-1999 or ELEKTRA ETI-1544. In individual cases, e.g. for small cold stores in shops, ETV-1991 controller can be utilised.

Each heating circuit (primary and backup) should be equipped with a separate temperature controller. Temperature sensors should be installed in protective conduits facilitating their replacement in case of a failure.

For the control of BET heating cables warming concrete mixtures, ETI-1544 controller should be utilised. The controller will perform the temperature measurement of concrete mixtures with a temperature sensor and only switch the heating system on when the temperature of already poured concrete drops e.g. below 10°C, and switch it off when the temperature exceeds the given level.

The required number of heating cables can be switched by the controller by using a contactor, ensuring that you do not exceed the maximum demand of the power supply for the concrete heating system.

ELEKTRA ETV

- **DIN-rail mounting**
- Equipped with an external temperature sensor. Quite small dimensions (2 modules). LED indicates if the system is turned on.

ELEKTRA ETI

- **DIN-rail mounting**
- Equipped with an external temperature sensor. Adjustable hysteresis allows to set-up the accuracy of the temperature measurement. LED indicates if the system is turned on. Quite small dimensions (2 modules).

ELEKTRA ETN4

- **DIN-rail mounting**
- Temperature controller supporting two temperature sensors, including a limiting one. Large backlit display presents the operating parameters of the controller. Adjustable hysteresis allows to define precision of the temperature measurements. Equipped with the on/off switch.

ELEKTRA ETI-1522

- Model ETI-1522 is especially recommended for installation of a temperature sensor on elements covered with grease, or when temporary temperature, e.g. during washing or rinsing, exceeds +50°C (e.g. tanks). The controller is equipped with a dedicated sensor suitable for operation in temperatures from -40°C up to +120°C.
8.7 Product Selection Guide

<table>
<thead>
<tr>
<th>Application</th>
<th>Heating Power</th>
<th>VC10</th>
<th>VC15</th>
<th>VC20</th>
<th>VCD10</th>
<th>VCDR20</th>
<th>BET</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold stores</td>
<td>15-30</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>ETN4-1999</td>
</tr>
<tr>
<td>Industrial tanks</td>
<td>As per calculation</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>ETV-1991 ETI-1544</td>
</tr>
<tr>
<td>Aerial masts</td>
<td>200-300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>ETI-1522</td>
</tr>
<tr>
<td>Concrete curing</td>
<td>75-200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>ETI-1544</td>
</tr>
</tbody>
</table>
9. Agricultural Heating Systems

9.1 Pigsties and Cowsheds

Pig pens should be warm, ventilated, properly lighted, and appropriate for each stage of life. Microclimatic conditions are vital in relation to the health, comfort, and productivity of the animals.

Such conditions are as follows:

- Humidity
- Temperature
- Lighting
- Air pollution

Of these conditions, the most important are humidity and temperature.

Depending on the quality of the building, these conditions are subject to vary, and therefore have substantial influence on the animals.

Pigs that are subjected to colder temperatures are at risk to breathing problems, increased food rations, and lower birth weights. During the time where pigs gain most of their weight (35-70kg), this body mass increase is diminished by 15-20g per day at a 1°C decrease of required air temperature.

Temperature requirements for pigs:

- Piglets: 24-26°C
- Pigs: 17-24°C
- Fattening pigs: 14-22°C
- Boars: 12-20°C
- Sows (little or no piglets): 12-20°C
- Sows (many piglets): 15-25°C
- Feeding sows: 18-26°C

Due to these temperature requirements, floor heating should be used to adapt to the needs of each type of pig. The system should be installed under the entire pen or where the pigs reside the most.

The required power per m\(^2\) depends on the body weight of the animal:

- Pigs below 20kg: 200W/m\(^2\)
- Pigs 20-50kg: 150W/m\(^2\)
- Pigs above 50kg: 100W/m\(^2\)
Floor heating may be installed only where the need for heat is required the most, to decrease the costs of heating. Piglets have a need for higher temperatures, as opposed to full-grown animals which can be the lower temperature of 18°C.

Floor heating ensures:
- Temperature control through means of a temperature controller with a floor temperature sensor
- Regular temperature distribution
- Individual control of each pen
- High flexibility with heating cables location
- Dry floors (bedding is advised for excrement removal)

Heating pigsties requires a two cold tail heating cable with a power of 20W/m. Cables should be installed using an assembly net and submerged in 50mm of concrete.

![Thermal standards for individual production groups](chart1.png)

![Heating power at 1 m² of surface according to weight of individual](chart2.png)
9.1.1 Selecting Heating Cables

Example: A 1.6 m² pig penn for pregnant pigs

A power rating of 200W/m² is required. The area requiring heat (bedding) is 1.7m². The power of the heating cable should be 330W.

For this installation, a two cold tail ELEKTRA VC heating cable with a power rating of 20W/m² should be selected. The ELEKTRA VC 20/330 has a length of 17m, and a distance of a-a = 1.7m²/17m = 0.1m = 100mm should be maintained. A controller with a floor temperature sensor is recommended.

The drawing depicts the layout of the heating cables in the pig penn. The only area heated is the sleeping area.

9.1.2 Control

ELEKTRA ETN4-1999, ELEKTRA ETV-1991 DIN-rail controllers with external temperature sensors are recommended.

Cowsheds

Heating cables installed across cowsheds with a width of 600-800mm, in accordance to the direction in which the animals sleep in. The unit power of the surface should be 50-80W/m².

The drawing depicts the layout of the heating cables in the cowshed.
9.2 Plant Propagation

Due to easy installation and low running costs, heating cables are used to aid the growth of plants. Plants grown with warm soil are healthier and produce a better yield, it is possible to speed up the vegetation and production of yield. Greenhouses that are heated this way can be used till late autumn.

Basic application of heating cables in propagation:

1. To heat plant beds for seedlings:
 - for fruit growing
 - for flowers
2. For vegetable growing, to speed up growth

Installing Heating Cables
The power required is dependant on the type of plant and the construction of the plant bench. Cables with a power of 10W/m are the most common, and effectively should provide a power of 60-70W/m².

Example: 50m² Bench Area
- Heating power: 60W/m²
- Installed heat power: 2970W
- Amount: 3 cables
- Type: ELEKTRA VC 10/990
- Single cable length: 100m
- Distance between cables: 200mm
- Supply: 230V
- Temperature controller: ETV 1991

Selecting an appropriate cable for propagation and keeping a set temperature makes a large impact on the health of the plants.
9.3 Product Selection Guide

<table>
<thead>
<tr>
<th>Application</th>
<th>Heating Power [W/m²]</th>
<th>Heating Cables</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VC10</td>
<td>VC20</td>
</tr>
<tr>
<td>Pigsties</td>
<td>100-200</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Cowshed</td>
<td>50-80</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Propagation</td>
<td>60-70</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>
10. Sports Fields

Installing ELEKTRA heating cables on sport fields allows them to be used all year round. Heating increases the hardiness of the grass roots and the ability to withstand intensive use.

Depending on the climatic conditions, the installed power range should range from 50-120W/m². A lower power is required when the field is covered by a sheet during frost, snow, or rainfall. The sheet is composed of high density polyethylene (HDPE), and is reinforced with a glass yarn net. By using the sheet, the heating required and snow deposit is decreased, and it is easier to maintain a proper humidity for the grass.

According to FIFA recommendations, football pitches should have the following dimensions:
Length: 100-120m
Width: 64-90m
A standard pitch is 105 x 72m = 7560m² and requires 380-910kW of power.

Heating systems do not require any additional electrical installations or separate transformer stations because of the possibility of utilizing the existing floodlight system. The heating and lighting cables can be used interchangeably. Illumination is used during games, and due to large thermal inertia, switching off the heating for a few hours will not have a significant affect on the temperature of the turf.

Installation
Heating fields consists of dividing the area into zones. Each zone should be independently controlled through the use of an individual controller (i.e. ELEKTRA ETN4-1999, ELEKTRA ETI-1544 or ELEKTRA ETV-1991) with the temperature sensor being located at the same level of the grass roots.
A double-side supplied heating cable ELEKTRA VC with a voltage rating of 230V and a power rating of 20W/m or an ELEKTRA VCD with a power rating of 25W/m would be appropriate cables for this sort of installation.

The cables should be installed in a layer of sand, 250-300mm under the level of grass, and fastened through means of an assembly net or ELEKTRA TME installation tape. The distance between the cables is dependant on the type and unit power of the cable, but should be approximately 250mm.
Installing the heating cables at a depth of 250-300mm prevents any mechanical damages during grass maintenance and/or possible removal, and it also guarantees a uniform distribution of heat at root level.

The set temperature should be approximately +10°C, as it is proven to be the most favourable with regards to growth and will not overheat the roots.

Heating cables are commonly laid along the shorter side of the field and the supply cables are led along one side in a cable duct with a connection to the power supply.
electric heating systems

product catalogue
Index

1. Introduction
2. Products

<table>
<thead>
<tr>
<th>Heating Mats</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-side power supply</td>
<td>MD</td>
<td>11</td>
</tr>
<tr>
<td>Double-side power supply</td>
<td>MG</td>
<td>13</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>WoodTec2™</td>
<td>15</td>
</tr>
<tr>
<td>Double-side power supply</td>
<td>WoodTec1™</td>
<td>17</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>SnowTec®</td>
<td>19</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>SnowTec® Tuff</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heating Cables</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-side power supply</td>
<td>UltraTec</td>
<td>23</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>DM</td>
<td>25</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>VCD</td>
<td>27</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>TuffTec™</td>
<td>29</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>VCDR</td>
<td>31</td>
</tr>
<tr>
<td>Double-side power supply</td>
<td>VC</td>
<td>33</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>FreezeTec®</td>
<td>35</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>BET</td>
<td>37</td>
</tr>
<tr>
<td>Self-regulating</td>
<td>SelfTec® PRO</td>
<td>39</td>
</tr>
<tr>
<td>Self-regulating</td>
<td>SelfTec® PRO TC</td>
<td>41</td>
</tr>
<tr>
<td>Self-regulating</td>
<td>SelfTec®</td>
<td>43</td>
</tr>
<tr>
<td>Self-regulating</td>
<td>SelfTec® (spool)</td>
<td>45</td>
</tr>
<tr>
<td>Self-regulating</td>
<td>SelfTec® DW</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation Accessories</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-side power supply</td>
<td>MMV</td>
<td>51</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>MMR</td>
<td>52</td>
</tr>
<tr>
<td>CX</td>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portable Heating Mats</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-side power supply</td>
<td>OWD5 WiFi</td>
<td>55</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>OCD5</td>
<td>56</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>OCD4</td>
<td>57</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>ELR 20</td>
<td>58</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>DIGI2</td>
<td>59</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>OTD2</td>
<td>60</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>OTN</td>
<td>61</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>ETOG2</td>
<td>62</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>ETOR2</td>
<td>63</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>ETR2G</td>
<td>64</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>ETR2R</td>
<td>65</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>UTR 60-PRO</td>
<td>66</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>TDR 4020-PRO</td>
<td>67</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>ETV</td>
<td>68</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>ETN4</td>
<td>69</td>
</tr>
<tr>
<td>Single-side power supply</td>
<td>ETI</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Towel Dryers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Controllers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELEKTRA
Leading Brand

ELEKTRA specializes in electric heating systems for both residential and commercial buildings. Established in 1985, the company is currently the largest and most reputable producer of floor heating systems in Central Europe. From the beginning product quality has been the first priority for the company. This is the only way to satisfy all customers and achieve and maintain leadership in the market.

ELEKTRA
Stock Availability

Throughout the EU and around the world, ELEKTRA products are readily available through a network of approved and authorized distributors, installers and even dedicated websites.
The heightened mechanical durability and flexibility of ELEKTRA heating cables is achieved through the use of multi-stranded wire construction of the cores.

Know-how & Experience

Many years of continuous operation combined with the latest technology ensures the expert ELEKTRA engineers constantly develop new and innovative solutions. ELEKTRA products remain at the forefront, providing the highest level of quality and customer satisfaction.

Raw Material Control

The rigorous selection, approval and use of an established and qualitative raw material supply chain including: Isabellenhütte, Sandvik, 3M & Borealis, ensures the quality and integrity of ELEKTRA products.

Multi-wire Construction

Both cores are heating, allowing equal power distribution of 50% to each core. This significantly lowers the actual operating temperatures of the heating cores which prolongs the life span of the products.

Dual Heating Cores
Double-layer Insulation

The use of double-layer insulation in products especially designed for extremely demanding operating conditions ensures superior thermal and electric features, thus significantly enhancing durability of the products.

Precise Extrusion

Precise parameter settings are achieved with computer controlled extrusion processes, ensuring correct structure and necessary quality of the extruded insulation and outer sheath.

Laser Measurement

Laser measurement equipment in extrusion lines guarantees insulation and outer sheath thickness to within a tolerance of 0.05mm, and maintains uniform cable centricity.
Uniformity of Resistance

The necessary maintenance of uniform cable tension and therefore stability of resistance is achieved through the use of modern production machines at each stage of the production process. This uniformity and stability is confirmed with 6 individual measurements of heating wire resistance during production.

Faultless Joint

Only modern precision calibrated pneumatic devices guaranteeing adequate uniform force of joint clamping are used. The material and construction of joints to the level of IPX7 minimum, guarantees the protection of connections in products.

High Voltage Control

Production defects are wholly eliminated by rigorous high voltage control monitoring in the production line, and an additional final high voltage test of every single product, not random testing.
The marking of each product with a unique production code means the history of the entire production process and materials used in manufacture can be traced.

Unique Code

ELEKTRA quality confirmed by the research results and certificates of VDE and EAC, as well as certificates issued by, among others, UL (Underwriters Laboratories), ETL, Predom OBR, BBJ, Bureau Veritas and PZH.

Quality Confirmed
ELEKTRA Heating Mats

ELEKTRA MD Heating Mats are ready-to-install heating elements which are produced in accordance with EN 60335-2-96. Consisting of a thin heating cable attached to a self-adhesive glass fibre mesh, the system is designed for indoor use and direct heating. It should be installed directly under the surface to be heated, in either flexible tile adhesive or self-levelling compound.

This package contains:
• ELEKTRA heating mat,
• ‘cold tails’ flexible conduit,
• flexible conduit for the temperature sensor, capped on one end,
• recessed distribution box Ø 60 mm for the temperature controller,
• instruction manual,
• installation video, DVD for PC and Mac.

Technical data:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>100, 160 or 200 W/m² (200 W/m² applicable in the UK only)</td>
</tr>
<tr>
<td>Power supply</td>
<td>230 V ~ 50/60 Hz</td>
</tr>
<tr>
<td>Mat thickness</td>
<td>~ 3.9 mm</td>
</tr>
<tr>
<td>Min. installation temperature</td>
<td>~5°C</td>
</tr>
<tr>
<td>Max. working temperature</td>
<td>+110°C</td>
</tr>
<tr>
<td>Conduit cables</td>
<td>1 x 4 m; 3 x 1.00 mm²</td>
</tr>
<tr>
<td>Type of heating cable</td>
<td>double-core of diameter ~ 3.4 mm, single-side power supply</td>
</tr>
<tr>
<td>Screen of heating cables</td>
<td>100% coverage, tinned copper braiding</td>
</tr>
<tr>
<td>Power output of heating cable</td>
<td>~ 7 W/m (MD100), ~ 10 W/m (MD160), ~ 12 W/m (MD200)</td>
</tr>
<tr>
<td>Insulation</td>
<td>double layer, FEP + XLPE</td>
</tr>
<tr>
<td>Outer sheath</td>
<td>XLPE</td>
</tr>
<tr>
<td>Rated power output tolerance</td>
<td>+5%, -10%</td>
</tr>
<tr>
<td>Min. radius of bending cable</td>
<td>> 600 N</td>
</tr>
<tr>
<td>Deformation strength</td>
<td>> 120 N</td>
</tr>
<tr>
<td>Pulling strength</td>
<td>IPX7</td>
</tr>
<tr>
<td>Protection</td>
<td>IPX7</td>
</tr>
<tr>
<td>Product certificates</td>
<td>VDE, EAC</td>
</tr>
<tr>
<td>Certificate of ISO 9001:</td>
<td>IQNET, PCBC</td>
</tr>
<tr>
<td>Product mark</td>
<td>CE</td>
</tr>
</tbody>
</table>
100 W/m²

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>SURFACE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m x m</td>
<td>m²</td>
<td>W</td>
</tr>
<tr>
<td>MD 100/1.0</td>
<td>0.5 x 2.0</td>
<td>1.00</td>
<td>100</td>
</tr>
<tr>
<td>MD 100/1.5</td>
<td>0.5 x 3.0</td>
<td>1.50</td>
<td>150</td>
</tr>
<tr>
<td>MD 100/2.0</td>
<td>0.5 x 4.0</td>
<td>2.00</td>
<td>200</td>
</tr>
<tr>
<td>MD 100/2.5</td>
<td>0.5 x 5.0</td>
<td>2.50</td>
<td>250</td>
</tr>
<tr>
<td>MD 100/3.0</td>
<td>0.5 x 6.0</td>
<td>3.00</td>
<td>300</td>
</tr>
<tr>
<td>MD 100/3.5</td>
<td>0.5 x 7.0</td>
<td>3.50</td>
<td>350</td>
</tr>
<tr>
<td>MD 100/4.0</td>
<td>0.5 x 8.0</td>
<td>4.00</td>
<td>400</td>
</tr>
<tr>
<td>MD 100/4.5</td>
<td>0.5 x 9.0</td>
<td>4.50</td>
<td>450</td>
</tr>
<tr>
<td>MD 100/5.0</td>
<td>0.5 x 10.0</td>
<td>5.00</td>
<td>500</td>
</tr>
<tr>
<td>MD 100/6.0</td>
<td>0.5 x 12.0</td>
<td>6.00</td>
<td>600</td>
</tr>
<tr>
<td>MD 100/8.0</td>
<td>0.5 x 16.0</td>
<td>8.00</td>
<td>800</td>
</tr>
<tr>
<td>MD 100/10.0</td>
<td>0.5 x 20.0</td>
<td>10.00</td>
<td>1000</td>
</tr>
<tr>
<td>MD 100/12.0</td>
<td>0.5 x 24.0</td>
<td>12.00</td>
<td>1200</td>
</tr>
</tbody>
</table>

160 W/m²

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>SURFACE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m x m</td>
<td>m²</td>
<td>W</td>
</tr>
<tr>
<td>MD 160/0.5</td>
<td>0.5 x 1.0</td>
<td>0.50</td>
<td>80</td>
</tr>
<tr>
<td>MD 160/1.0</td>
<td>0.5 x 2.0</td>
<td>1.00</td>
<td>160</td>
</tr>
<tr>
<td>MD 160/1.5</td>
<td>0.5 x 3.0</td>
<td>1.50</td>
<td>240</td>
</tr>
<tr>
<td>MD 160/2.0</td>
<td>0.5 x 4.0</td>
<td>2.00</td>
<td>320</td>
</tr>
<tr>
<td>MD 160/2.5</td>
<td>0.5 x 5.0</td>
<td>2.50</td>
<td>400</td>
</tr>
<tr>
<td>MD 160/3.0</td>
<td>0.5 x 6.0</td>
<td>3.00</td>
<td>480</td>
</tr>
<tr>
<td>MD 160/3.5</td>
<td>0.5 x 7.0</td>
<td>3.50</td>
<td>560</td>
</tr>
<tr>
<td>MD 160/4.0</td>
<td>0.5 x 8.0</td>
<td>4.00</td>
<td>640</td>
</tr>
<tr>
<td>MD 160/5.0</td>
<td>0.5 x 10.0</td>
<td>5.00</td>
<td>800</td>
</tr>
<tr>
<td>MD 160/6.0</td>
<td>0.5 x 12.0</td>
<td>6.00</td>
<td>960</td>
</tr>
<tr>
<td>MD 160/7.0</td>
<td>0.5 x 14.0</td>
<td>7.00</td>
<td>1120</td>
</tr>
<tr>
<td>MD 160/8.0</td>
<td>0.5 x 16.0</td>
<td>8.00</td>
<td>1280</td>
</tr>
<tr>
<td>MD 160/9.0</td>
<td>0.5 x 18.0</td>
<td>9.00</td>
<td>1440</td>
</tr>
<tr>
<td>MD 160/10.0</td>
<td>0.5 x 20.0</td>
<td>10.00</td>
<td>1600</td>
</tr>
</tbody>
</table>

200 W/m² (applicable in the UK only)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>SURFACE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m x m</td>
<td>m²</td>
<td>W</td>
</tr>
<tr>
<td>MD 200/1.0</td>
<td>0.5 x 2.0</td>
<td>1.00</td>
<td>200</td>
</tr>
<tr>
<td>MD 200/1.5</td>
<td>0.5 x 3.0</td>
<td>1.50</td>
<td>300</td>
</tr>
<tr>
<td>MD 200/2.0</td>
<td>0.5 x 4.0</td>
<td>2.00</td>
<td>400</td>
</tr>
<tr>
<td>MD 200/2.5</td>
<td>0.5 x 5.0</td>
<td>2.50</td>
<td>500</td>
</tr>
<tr>
<td>MD 200/3.0</td>
<td>0.5 x 6.0</td>
<td>3.00</td>
<td>600</td>
</tr>
<tr>
<td>MD 200/3.5</td>
<td>0.5 x 7.0</td>
<td>3.50</td>
<td>700</td>
</tr>
<tr>
<td>MD 200/4.0</td>
<td>0.5 x 8.0</td>
<td>4.00</td>
<td>800</td>
</tr>
<tr>
<td>MD 200/4.5</td>
<td>0.5 x 9.0</td>
<td>4.50</td>
<td>900</td>
</tr>
<tr>
<td>MD 200/5.0</td>
<td>0.5 x 10.0</td>
<td>5.00</td>
<td>1000</td>
</tr>
<tr>
<td>MD 200/6.0</td>
<td>0.5 x 12.0</td>
<td>6.00</td>
<td>1200</td>
</tr>
<tr>
<td>MD 200/7.0</td>
<td>0.5 x 14.0</td>
<td>7.00</td>
<td>1400</td>
</tr>
<tr>
<td>MD 200/8.0</td>
<td>0.5 x 16.0</td>
<td>8.00</td>
<td>1600</td>
</tr>
<tr>
<td>MD 200/10.0</td>
<td>0.5 x 20.0</td>
<td>10.00</td>
<td>2000</td>
</tr>
</tbody>
</table>

Accessories:

Temperature controllers: OWDS WiFi, OCD5, OCD4, DIGI2, OTN, OTD, ELR 20, ETN4
ELEKTRA Heating Mats

ELEKTRA MG Heating Mats are ready-to-install heating elements which are produced in accordance with EN 60335-2-96. Consisting of a thin heating cable attached to a self-adhesive glass fibre mesh, the system is designed for indoor use and direct heating. It should be installed directly under the surface to be heated, in either flexible tile adhesive or self-levelling compound.

This package contains:
• ELEKTRA heating mat,
• 'cold tails' flexible conduit,
• flexible conduit for the temperature sensor, capped on one end,
• recessed distribution box Ø 60 mm for the temperature controller,
• instruction manual,
• installation video, DVD for PC and Mac.

> Technical data:

Power output: 100 or 160 W/m²
Power supply: 230 V ~ 50/60 Hz
Mat thickness: ~ 3 mm
Min. installation temperature: -5°C
Max. working temperature: +105°C
Conduit cables: 2 x 4 m; 2 x 1.0 mm²
Type of heating cable: one-core of diameter ~ 2.5 mm, double-side power supply
Screen of heating cables: 100% coverage, tinned copper braiding
Power output of heating cable: ~ 7 W/m (MG100), ~ 10 W/m (MG160)
Insulation: double layer, FEP + HDPE
Outer sheath: XLPE
Rated power output tolerance: +5%, -10%
Min. radius of bending cable: 5 D
Deformation strength: > 600 N
Pulling strength: > 120 N
Protection: IPX7
Product certificates: VDE, EAC
Certificate of ISO 9001: IQNET, PCBC
Product mark: CE
100 W/m\(^2\)*

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>SURFACE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>m x m</td>
<td>m(^2)</td>
<td>W</td>
</tr>
<tr>
<td>MG 100/2.0</td>
<td>0.5 x 4.0</td>
<td>2.00</td>
<td>200</td>
</tr>
<tr>
<td>MG 100/3.0</td>
<td>0.5 x 6.0</td>
<td>3.00</td>
<td>300</td>
</tr>
<tr>
<td>MG 100/3.5</td>
<td>0.5 x 7.0</td>
<td>3.50</td>
<td>350</td>
</tr>
<tr>
<td>MG 100/4.5</td>
<td>0.5 x 9.0</td>
<td>4.50</td>
<td>450</td>
</tr>
<tr>
<td>MG 100/9.0</td>
<td>0.5 x 18.0</td>
<td>9.00</td>
<td>900</td>
</tr>
</tbody>
</table>

160 W/m\(^2\)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>SURFACE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>m x m</td>
<td>m(^2)</td>
<td>W</td>
</tr>
<tr>
<td>MG 160/1.0</td>
<td>0.5 x 2.0</td>
<td>1.00</td>
<td>160</td>
</tr>
<tr>
<td>MG 160/1.5</td>
<td>0.5 x 3.0</td>
<td>1.50</td>
<td>240</td>
</tr>
<tr>
<td>MG 160/2.0</td>
<td>0.5 x 4.0</td>
<td>2.00</td>
<td>320</td>
</tr>
<tr>
<td>MG 160/2.5</td>
<td>0.5 x 5.0</td>
<td>2.50</td>
<td>400</td>
</tr>
<tr>
<td>MG 160/3.0</td>
<td>0.5 x 6.0</td>
<td>3.00</td>
<td>480</td>
</tr>
<tr>
<td>MG 160/3.5</td>
<td>0.5 x 7.0</td>
<td>3.50</td>
<td>560</td>
</tr>
<tr>
<td>MG 160/4.0</td>
<td>0.5 x 8.0</td>
<td>4.00</td>
<td>640</td>
</tr>
<tr>
<td>MG 160/5.0</td>
<td>0.5 x 10.0</td>
<td>5.00</td>
<td>800</td>
</tr>
<tr>
<td>MG 160/6.0</td>
<td>0.5 x 12.0</td>
<td>6.00</td>
<td>960</td>
</tr>
<tr>
<td>MG 160/7.0</td>
<td>0.5 x 14.0</td>
<td>7.00</td>
<td>1120</td>
</tr>
<tr>
<td>MG 160/8.0</td>
<td>0.5 x 16.0</td>
<td>8.00</td>
<td>1280</td>
</tr>
<tr>
<td>MG 160/9.0</td>
<td>0.5 x 18.0</td>
<td>9.00</td>
<td>1440</td>
</tr>
<tr>
<td>MG 160/10.0</td>
<td>0.5 x 20.0</td>
<td>10.00</td>
<td>1600</td>
</tr>
</tbody>
</table>

* ELEKTRA MG 100 available until the stock lasts.

> **Accessories:**

Temperature controllers: OWD5 WiFi, OCD5, OCD4, DIGI2, OTN, OTD, ELR 20, ETN4
ELEKTRA Heating Mats

ELEKTRA WoodTec2™ Heating Mats are ready-to-install heating elements which are produced in accordance with EN 60335-2-96. Consisting of a very thin heating cable attached to a glass fibre mesh and aluminum foil, the system is designed for indoor use and direct heating. It should be installed directly under laminate flooring and/or engineered wood.

This package contains:
• ELEKTRA WoodTec2™ heating mat,
• 'cold tails' flexible conduit,
• flexible conduit for the temperature sensor,
• recessed distribution box Ø 60 mm for the temperature controller,
• aluminum adhesive tape,
• instruction manual.

Technical data:

- Power output: 70 W/m² (140 W/m² applicable in the UK only)
- Power supply: 230 V ~ 50/60 Hz
- Mat thickness: ~ 2.8 mm
- Min. installation temperature: ~ 5°C
- Max. working temperature: +95°C
- Conduit cables: 1 x 4 m; 3 x 1.0 mm²
- Type of heating cable: double-core of diameter ~ 2.3 mm, single-side power supply
- Power output of heating cable: ~ 3 W/m (WoodTec2™ 70), ~ 6 W/m (WoodTec2™ 140)
- Insulation: double layer, FEP + XLPE
- Rated power output tolerance: +5%, -10%
- Min. radius of bending cable: 5 D
- Screen of heating mats: PET covered aluminum foil
- Deformation strength: > 600 N
- Pulling strength: > 120 N
- Protection: IPX1
- Product certificates: EAC
- Certificate of ISO 9001: IQNET, PCBC
- Product mark: CE
- Deformation strength > 600 N
- Pulling strength: > 120 N
- Screen: PET covered aluminum foil
- Product mark: CE
70 W/m²

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>SURFACE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m x m</td>
<td>m²</td>
<td>W</td>
</tr>
<tr>
<td>WoodTec² ™ 70/2.0</td>
<td>0.5 x 4.0</td>
<td>2.00</td>
<td>140</td>
</tr>
<tr>
<td>WoodTec² ™ 70/3.0</td>
<td>0.5 x 6.0</td>
<td>3.00</td>
<td>210</td>
</tr>
<tr>
<td>WoodTec² ™ 70/4.0</td>
<td>0.5 x 8.0</td>
<td>4.00</td>
<td>280</td>
</tr>
<tr>
<td>WoodTec² ™ 70/6.0</td>
<td>0.5 x 12.0</td>
<td>6.00</td>
<td>420</td>
</tr>
<tr>
<td>WoodTec² ™ 70/8.0</td>
<td>0.5 x 16.0</td>
<td>8.00</td>
<td>560</td>
</tr>
<tr>
<td>WoodTec² ™ 70/11.0</td>
<td>0.5 x 22.0</td>
<td>11.00</td>
<td>770</td>
</tr>
<tr>
<td>WoodTec² ™ 70/13.0</td>
<td>0.5 x 26.0</td>
<td>13.00</td>
<td>910</td>
</tr>
</tbody>
</table>

140 W/m² (applicable in the UK only)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>SURFACE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m x m</td>
<td>m²</td>
<td>W</td>
</tr>
<tr>
<td>WoodTec² ™ 140/3.0</td>
<td>0.5 x 6.0</td>
<td>3.00</td>
<td>420</td>
</tr>
<tr>
<td>WoodTec² ™ 140/4.0</td>
<td>0.5 x 8.0</td>
<td>4.00</td>
<td>560</td>
</tr>
<tr>
<td>WoodTec² ™ 140/5.0</td>
<td>0.5 x 10.0</td>
<td>5.00</td>
<td>700</td>
</tr>
<tr>
<td>WoodTec² ™ 140/6.0</td>
<td>0.5 x 12.0</td>
<td>6.00</td>
<td>840</td>
</tr>
<tr>
<td>WoodTec² ™ 140/8.0</td>
<td>0.5 x 16.0</td>
<td>8.00</td>
<td>1120</td>
</tr>
<tr>
<td>WoodTec² ™ 140/10.0</td>
<td>0.5 x 20.0</td>
<td>10.00</td>
<td>1400</td>
</tr>
</tbody>
</table>

> **Accessories:**

Temperature controllers: OW5 WiFi, OCD5, OCD4, DIGI2, OTN, OTD, ELR 20, ETN4
ELEKTRA Heating Mats

ELEKTRA WoodTec™ Heating Mats are ready-to-install heating elements which are produced in accordance with EN 60335-2-96. Consisting of a very thin heating cable attached to a glass fibre mesh and aluminum foil, the system is designed for indoor use and direct heating. It should be installed directly under laminate flooring and/or engineered wood.

This package contains:
• ELEKTRA WoodTec™ heating mat,
• ‘cold tails’ flexible conduit,
• flexible conduit for the temperature sensor,
• recessed distribution box Ø 60 mm for the temperature controller,
• 2 electrical connectors,
• aluminum adhesive tape,
• instruction manual.

Technical data:

- Power output: 60 W/m²
- Power supply: 230 V ~ 50/60 Hz
- Mat thickness: ~ 1.9 mm
- Min. installation temperature: –5°C
- Max. working temperature: +80°C
- Conduit cables: 2 x 4 m; 2 x 1.0 mm² double layer, FEP + HDPE
- Type of heating cable: one-core of diameter ~ 1.3 mm, double-side power supply
- Power output of heating cable: ~ 3 W/m
- Insulation: double layer, FEP + HDPE
- Rated power output tolerance: +5%, -10%
- Min. radius of bending cable: 5 D
- Screen of heating mats: PET covered aluminum foil
- Deformation strength: > 600 N
- Pulling strength: > 120 N
- Protection: IPX1
- Product certificates: EAC, IQNET, PCBC
- Product mark: CE
60 W/m²

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>SURFACE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>m x m</td>
<td>m²</td>
<td>W</td>
</tr>
<tr>
<td>WoodTec™ 60/2.0</td>
<td>0.5 x 4.0</td>
<td>2.00</td>
<td>120</td>
</tr>
<tr>
<td>WoodTec™ 60/3.0</td>
<td>0.5 x 6.0</td>
<td>3.00</td>
<td>180</td>
</tr>
<tr>
<td>WoodTec™ 60/4.0</td>
<td>0.5 x 8.0</td>
<td>4.00</td>
<td>240</td>
</tr>
<tr>
<td>WoodTec™ 60/6.0</td>
<td>0.5 x 12.0</td>
<td>6.00</td>
<td>360</td>
</tr>
<tr>
<td>WoodTec™ 60/8.0</td>
<td>0.5 x 16.0</td>
<td>8.00</td>
<td>480</td>
</tr>
<tr>
<td>WoodTec™ 60/10.0</td>
<td>0.5 x 20.0</td>
<td>10.00</td>
<td>600</td>
</tr>
<tr>
<td>WoodTec™ 60/12.0</td>
<td>0.5 x 24.0</td>
<td>12.00</td>
<td>720</td>
</tr>
</tbody>
</table>

Accessories:

Temperature controllers: OWDS WiFi, OCD5, OCD4, DIGI2, OTN, OTD, ELR 20, ETN4
ELEKTRA Heating Mats

ELEKTRA SnowTec® Heating Mats are ready-to-install heating elements, composed of an ELEKTRA VCD heating cable produced in accordance with EN 60335-1. The cable is secured with unique tape in the mat shape. This system is designed for outdoor use to protect against snow and ice on driveways, walkways, ramps, etc.

This package contains:
• ELEKTRA SnowTec® heating mat,
• instruction manual.

> Technical data:

- Power output: 300 W/m²
- Power supply: 230 V, 400 V ~ 50/60 Hz
- Mat thickness: ~ 7.5 mm
- Min. installation temperature: –5°C
- Max. working temperature: +95°C
- Conduit cables: 1 x 4 m; 3 x 1.5 mm² or 3 x 2.5 mm²
- Type of heating cable: double-core of diameter ~ 5 x 7 mm, single-side power supply
- Screen of heating cables: 100% coverage, PET covered aluminum foil, tinned copper braiding
- Power output of heating cable: 30 W/m
- Insulation: XLPE
- Outer sheath: heat resistant PVC
- Rated power output tolerance: +5%, -10%
- Min. radius of bending cable: 5 D
- Deformation strength: > 1500 N
- Pulling strength: > 300 N
- Protection: IPX7
- Product certificates: EAC
- Certificate of ISO 9001: IQNET, PCBC
- Product mark: CE
230V

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnowTec® 300/2</td>
<td>0.6 x 2.00</td>
<td>400</td>
</tr>
<tr>
<td>SnowTec® 300/3</td>
<td>0.6 x 3.00</td>
<td>520</td>
</tr>
<tr>
<td>SnowTec® 300/4</td>
<td>0.6 x 4.00</td>
<td>670</td>
</tr>
<tr>
<td>SnowTec® 300/5</td>
<td>0.6 x 5.00</td>
<td>930</td>
</tr>
<tr>
<td>SnowTec® 300/7</td>
<td>0.6 x 7.00</td>
<td>1140</td>
</tr>
<tr>
<td>SnowTec® 300/10</td>
<td>0.6 x 10.00</td>
<td>1860</td>
</tr>
<tr>
<td>SnowTec® 300/13</td>
<td>0.6 x 13.00</td>
<td>2560</td>
</tr>
<tr>
<td>SnowTec® 300/16</td>
<td>0.6 x 16.00</td>
<td>2890</td>
</tr>
<tr>
<td>SnowTec® 300/21</td>
<td>0.6 x 21.00</td>
<td>3730</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnowTec® 300/3.1/0.4</td>
<td>0.4 x 3.10</td>
<td>370</td>
</tr>
<tr>
<td>SnowTec® 300/4.3/0.4</td>
<td>0.4 x 4.30</td>
<td>520</td>
</tr>
<tr>
<td>SnowTec® 300/5/0.4</td>
<td>0.4 x 5.00</td>
<td>590</td>
</tr>
<tr>
<td>SnowTec® 300/7/7.7/0.4</td>
<td>0.4 x 7.70</td>
<td>930</td>
</tr>
<tr>
<td>SnowTec® 300/9.6/0.4</td>
<td>0.4 x 9.60</td>
<td>1150</td>
</tr>
<tr>
<td>SnowTec® 300/12.5/0.4</td>
<td>0.4 x 12.50</td>
<td>1500</td>
</tr>
<tr>
<td>SnowTec® 300/15/0.4</td>
<td>0.4 x 15.00</td>
<td>1830</td>
</tr>
<tr>
<td>SnowTec® 300/16.5/0.4</td>
<td>0.4 x 16.50</td>
<td>2000</td>
</tr>
<tr>
<td>SnowTec® 300/20/0.4</td>
<td>0.4 x 20.00</td>
<td>2360</td>
</tr>
<tr>
<td>SnowTec® 300/24.0/0.4</td>
<td>0.4 x 24.00</td>
<td>2840</td>
</tr>
</tbody>
</table>

400V

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnowTec® 300/2 400V</td>
<td>0.6 x 2.00</td>
<td>400</td>
</tr>
<tr>
<td>SnowTec® 300/3 400V</td>
<td>0.6 x 3.00</td>
<td>600</td>
</tr>
<tr>
<td>SnowTec® 300/4 400V</td>
<td>0.6 x 4.00</td>
<td>820</td>
</tr>
<tr>
<td>SnowTec® 300/5 400V</td>
<td>0.6 x 5.00</td>
<td>950</td>
</tr>
<tr>
<td>SnowTec® 300/7 400V</td>
<td>0.6 x 7.00</td>
<td>1360</td>
</tr>
<tr>
<td>SnowTec® 300/9 400V</td>
<td>0.6 x 9.00</td>
<td>1680</td>
</tr>
<tr>
<td>SnowTec® 300/11 400V</td>
<td>0.6 x 11.00</td>
<td>2100</td>
</tr>
<tr>
<td>SnowTec® 300/13 400V</td>
<td>0.6 x 13.00</td>
<td>2360</td>
</tr>
<tr>
<td>SnowTec® 300/15 400V</td>
<td>0.6 x 15.00</td>
<td>2650</td>
</tr>
<tr>
<td>SnowTec® 300/20 400V</td>
<td>0.6 x 20.00</td>
<td>3550</td>
</tr>
<tr>
<td>SnowTec® 300/25 400V</td>
<td>0.6 x 25.0</td>
<td>4600</td>
</tr>
</tbody>
</table>

> Accessories:

Temperature controllers: ETOG2, ETR2G
ELEKTRA Heating Mats

ELEKTRA SnowTec® Tuff Heating Mats are ready-to-install heating elements, dedicated to special applications, composed of an ELEKTRA TuffTec™ heating cable produced in accordance with EN 60335-1. The cable is secured with unique tape in the mat shape. This system is designed for outdoor use to protect against snow and ice on driveways, walkways, ramps, etc.

Exceptional mechanical and thermal resistance allows for the application in spots especially exposed to harsh installation and operation conditions. Very high temporary exposure temperature (240°C) will make it possible to install the SnowTec® Tuff heating mats even directly in asphalt.

This package contains:
- ELEKTRA SnowTec® Tuff heating mat,
- instruction manual.

> Technical data:

- Power output: 400 W/m²
- Power supply: 230 V, 400 V ~ 50/60 Hz
- Mat thickness: ~ 7.5 mm
- Min. installation temperature: −25°C
- Max. working temperature: +110°C
- Max. exposure temperature (10 min.): +240°C
- Conduit cables: 1 x 4 m; 3 x 1.5 mm² or 3 x 2.5 mm²
- Type of heating cable: double-core of diameter ~ 6.8 mm, single-side power supply
- Screen of heating cables: 100% coverage, PET covered aluminum foil, tinned copper braiding
- Power output of heating cable: ~ 40 W/m
- Insulation: double layer, FEP + HDPE
- Outer sheath: HFFR
- Rated power output tolerance: +5%, -10%
- Min. radius of bending cable: 3.5 D
- Deformation strength: > 1500 N
- Pulling strength: > 300 N
- Protection: IPX7
- Product certificates: EAC
- Certificate of ISO 9001: IQNET, PCBC
- Product mark: CE
230V

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m x m</td>
<td>W</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SnowTec Tuff 400/1.5</td>
<td>0.6 x 1.50</td>
<td>310</td>
</tr>
<tr>
<td>SnowTec Tuff 400/3.0</td>
<td>0.6 x 3.00</td>
<td>730</td>
</tr>
<tr>
<td>SnowTec Tuff 400/4.5</td>
<td>0.6 x 4.50</td>
<td>1150</td>
</tr>
<tr>
<td>SnowTec Tuff 400/6.0</td>
<td>0.6 x 6.00</td>
<td>1350</td>
</tr>
<tr>
<td>SnowTec Tuff 400/7.5</td>
<td>0.6 x 7.50</td>
<td>1800</td>
</tr>
<tr>
<td>SnowTec Tuff 400/9.0</td>
<td>0.6 x 9.00</td>
<td>2150</td>
</tr>
<tr>
<td>SnowTec Tuff 400/10.0</td>
<td>0.6 x 10.00</td>
<td>2350</td>
</tr>
<tr>
<td>SnowTec Tuff 400/12.0</td>
<td>0.6 x 12.00</td>
<td>2800</td>
</tr>
<tr>
<td>SnowTec Tuff 400/14.0</td>
<td>0.6 x 14.00</td>
<td>3400</td>
</tr>
<tr>
<td>SnowTec Tuff 400/16.0</td>
<td>0.6 x 16.00</td>
<td>3850</td>
</tr>
<tr>
<td>SnowTec Tuff 400/18.0</td>
<td>0.6 x 18.00</td>
<td>4400</td>
</tr>
</tbody>
</table>

400V

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m x m</td>
<td>W</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SnowTec Tuff 400/2.5 400V</td>
<td>0.6 x 2.50</td>
<td>560</td>
</tr>
<tr>
<td>SnowTec Tuff 400/5.0 400V</td>
<td>0.6 x 5.00</td>
<td>1260</td>
</tr>
<tr>
<td>SnowTec Tuff 400/8.0 400V</td>
<td>0.6 x 8.00</td>
<td>1940</td>
</tr>
<tr>
<td>SnowTec Tuff 400/10.0 400V</td>
<td>0.6 x 10.00</td>
<td>2350</td>
</tr>
<tr>
<td>SnowTec Tuff 400/13.0 400V</td>
<td>0.6 x 13.00</td>
<td>3100</td>
</tr>
<tr>
<td>SnowTec Tuff 400/15.0 400V</td>
<td>0.6 x 15.00</td>
<td>3870</td>
</tr>
<tr>
<td>SnowTec Tuff 400/17.0 400V</td>
<td>0.6 x 17.00</td>
<td>4150</td>
</tr>
<tr>
<td>SnowTec Tuff 400/20.0 400V</td>
<td>0.6 x 20.00</td>
<td>4910</td>
</tr>
<tr>
<td>SnowTec Tuff 400/22.0 400V</td>
<td>0.6 x 22.00</td>
<td>5310</td>
</tr>
<tr>
<td>SnowTec Tuff 400/25.0 400V</td>
<td>0.6 x 25.00</td>
<td>5800</td>
</tr>
<tr>
<td>SnowTec Tuff 400/27.0 400V</td>
<td>0.6 x 27.00</td>
<td>6480</td>
</tr>
</tbody>
</table>

Accessories:

Temperature controllers: ETOG2, ETR2G
ELEKTRA Heating Cables

ELEKTRA UltraTec Heating Cables are ready-to-install heating units which are produced in accordance with EN 60335-1. They consist of an ultra-thin, high temperature resistant cable, terminated with a cold tail. This system is designed for indoor use and direct heating. It should be installed directly under the surface to be heated, in either flexible tile adhesive or self-levelling compound.

Technical data:

- **Power output:** 10 W/m
- **Power supply:** 230 V ~ 50/60 Hz
- **External dimension of cable:** ~ 2 x 3 mm
- **Min. installation temperature:** –20°C
- **Max. working temperature:** +150°C
- **Conduit cables:** 1 x 2.5 m; 2 x 1.0 mm²
- **Type of heating cable:** double-core, single-side power supply
- **Screen of heating cables:** 100% coverage, tinned copper braiding
- **Insulation:** FEP
- **Outer sheath:** FEP
- **Rated power output tolerance:** +5%, -10%
- **Min. radius of bending cable:** 5 D
- **Deformation strength:** > 600 N
- **Pulling strength:** > 120 N
- **Protection:** IPX8
- **Product certificates:** B, EAC
- **Certificate of ISO 9001:** IQNET, PCBC
- **Produkt mark:** CE

This package contains:
- ELEKTRA heating cable (on a spool),
- self-adhesive installation tape,
- ‘cold tails’ flexible conduit,
- flexible conduit for the temperature sensor, capped on one end,
- recessed distribution box Ø 60 mm for the temperature controller,
- instruction manual.
UltraTec Heating Cables

Table: UltraTec Heating Cable Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Length (m)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UltraTec 10/90</td>
<td>8.50</td>
<td>90</td>
</tr>
<tr>
<td>UltraTec 10/135</td>
<td>13.50</td>
<td>135</td>
</tr>
<tr>
<td>UltraTec 10/145</td>
<td>15.00</td>
<td>145</td>
</tr>
<tr>
<td>UltraTec 10/220</td>
<td>22.50</td>
<td>220</td>
</tr>
<tr>
<td>UltraTec 10/285</td>
<td>28.50</td>
<td>285</td>
</tr>
<tr>
<td>UltraTec 10/320</td>
<td>32.00</td>
<td>320</td>
</tr>
<tr>
<td>UltraTec 10/400</td>
<td>40.00</td>
<td>400</td>
</tr>
<tr>
<td>UltraTec 10/450</td>
<td>45.00</td>
<td>450</td>
</tr>
<tr>
<td>UltraTec 10/555</td>
<td>55.00</td>
<td>555</td>
</tr>
<tr>
<td>UltraTec 10/690</td>
<td>70.00</td>
<td>690</td>
</tr>
<tr>
<td>UltraTec 10/780</td>
<td>78.00</td>
<td>780</td>
</tr>
<tr>
<td>UltraTec 10/980</td>
<td>98.00</td>
<td>980</td>
</tr>
<tr>
<td>UltraTec 10/1100</td>
<td>110.00</td>
<td>1100</td>
</tr>
<tr>
<td>UltraTec 10/1320</td>
<td>132.00</td>
<td>1320</td>
</tr>
<tr>
<td>UltraTec 10/1650</td>
<td>165.00</td>
<td>1650</td>
</tr>
<tr>
<td>UltraTec 10/2050</td>
<td>203.00</td>
<td>2050</td>
</tr>
</tbody>
</table>

Accessories:

Temperature controllers: OWDS WiFi, OCD5, OCD4, DIGI2, OTN, OTD, ELR 20, ETN4
ELEKTRA Heating Cables

ELEKTRA DM Heating Cables are ready-to-install heating units which are produced in accordance with EN 60335-1. A thin heating cable of the length depending on the model, has factory connected cold tail cable. This system is designed for indoor use and direct heating. It should be installed directly under the surface to be heated, in either flexible tile adhesive or self-levelling compound.

> Technical data:

- Power output: 10 W/m
- Power supply: 230 V ~ 50/60 Hz
- Diameter of cable: ~ 4.3 mm
- Min. installation temperature: -5°C
- Max. working temperature: +110°C
- Conduit cables: 1 x 2.5 m; 2 x 1.0 mm²
- Type of heating cable: double-core, single-side power supply
- Screen of heating cables: 100% coverage, tinned copper braiding
- Insulation: double layer, FEP + XLPE
- Outer sheath: heat resistant PVC
- Rated power output tolerance: +5%, -10%
- Min. radius of bending cable: 5 D
- Deformation strength: > 600 N
- Pulling strength: > 120 N
- Protection: IPX7
- Product certificates: EAC, IQNET, PCBC
- Produkt mark: CE

This package contains:
- ELEKTRA heating cable (on a spool),
- self-adhesive installation tape,
- 'cold tails' flexible conduit,
- flexible conduit for the temperature sensor, capped on one end,
- recessed distribution box Ø 60 mm for the temperature controller,
- instruction manual.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH m</th>
<th>POWER W</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM 10/90</td>
<td>8.50</td>
<td>90</td>
</tr>
<tr>
<td>DM 10/135</td>
<td>13.50</td>
<td>135</td>
</tr>
<tr>
<td>DM 10/145</td>
<td>15.00</td>
<td>145</td>
</tr>
<tr>
<td>DM 10/220</td>
<td>22.50</td>
<td>220</td>
</tr>
<tr>
<td>DM 10/285</td>
<td>28.50</td>
<td>285</td>
</tr>
<tr>
<td>DM 10/320</td>
<td>32.00</td>
<td>320</td>
</tr>
<tr>
<td>DM 10/400</td>
<td>40.00</td>
<td>400</td>
</tr>
<tr>
<td>DM 10/450</td>
<td>45.00</td>
<td>450</td>
</tr>
<tr>
<td>DM 10/555</td>
<td>55.00</td>
<td>555</td>
</tr>
<tr>
<td>DM 10/690</td>
<td>70.00</td>
<td>690</td>
</tr>
<tr>
<td>DM 10/780</td>
<td>78.00</td>
<td>780</td>
</tr>
<tr>
<td>DM 10/980</td>
<td>98.00</td>
<td>980</td>
</tr>
<tr>
<td>DM 10/1100</td>
<td>110.00</td>
<td>1100</td>
</tr>
<tr>
<td>DM 10/1320</td>
<td>132.00</td>
<td>1320</td>
</tr>
<tr>
<td>DM 10/1650</td>
<td>165.00</td>
<td>1650</td>
</tr>
<tr>
<td>DM 10/2050</td>
<td>203.00</td>
<td>2050</td>
</tr>
</tbody>
</table>

Temperature controllers: OWDS WiFi, OCD5, OCD4, DIGI2, OTN, OTD, ELR 20, ETN4
ELEKTRA Heating Cables

ELEKTRA VCD Heating Cables are ready-to-install heating units which are produced in accordance with EN 60335-1. Heating cable of the length depending on the model, has factory connected cold tail cable.

Typical use:
- **VCD10** - floor heating (installation in mortar), antifrost protection of pipes.
- **VCD17** - floor heating (installation in mortar).
- **VCD25** - protection against snow and ice of external surfaces e.g. driveways, walkways, ramps, etc.

This package contains:
- ELEKTRA heating cable (on a spool),
- instruction manual.

Technical data:

- **Power output:** 10, 17 or 25 W/m
- **Power supply:** 230 V and 400 V (VCD 25 only) ~ 50/60 Hz
- **External dimension of cable:** ~ 5 x 7 mm
- **Min. installation temperature:** –5°C
- **Max. working temperature:** +95°C
- **Conduit cables:** 1 x 2.5 m; 3 x 1.0 mm², 3 x 1.5 mm² or 3 x 2.5 mm²
- **Type of heating cable:** double-core, single-side power supply
- **Screen of heating cables:** 100% coverage, PET covered aluminum foil, tinned copper braiding
- **Insulation:** XLPE
- **Outer sheath:** heat resistant PVC
- **Rated power output tolerance:** +5%, -10%
- **Min. radius of bending cable:** 3.5 D
- **Deformation strength:** > 1500 N
- **Pulling strength:** > 300 N
- **Protection:** IPX7
- **Product certificates:** EAC
- **Certificate of ISO 9001:** IQNET, PCBC
- **Product mark:** CE
Temperature Controllers

- OWD5 WiFi
- OCD5
- OCD4
- DIGI2
- OTN
- OTD
- ELR 20
- ETOG2
- ETR2G
- ETV
- ETN4
- ETI

Installation Accessories

Page 49 and 50

Accessories

Temperature controllers: OWD5 WiFi, OCD5, OCD4, DIGI2, OTN, OTD, ELR 20, ETOG2, ETR2G, ETV, ETN4, ETI

Installation accessories: page 49 and 50

Heating Cables

- **10 W/m**
 - **TYPE** | **LENGTH** | **POWER**
 - VCD 10/70 | 7.50 | 70
 - VCD 10/90 | 9.00 | 90
 - VCD 10/110 | 11.00 | 110
 - VCD 10/135 | 13.50 | 135
 - VCD 10/170 | 16.50 | 170
 - VCD 10/200 | 20.00 | 200
 - VCD 10/230 | 23.50 | 235
 - VCD 10/265 | 27.00 | 265
 - VCD 10/290 | 32.00 | 315
 - VCD 10/330 | 36.50 | 370
 - VCD 10/415 | 42.00 | 415
 - VCD 10/460 | 46.00 | 460
 - VCD 10/570 | 57.00 | 570
 - VCD 10/700 | 70.00 | 700
 - VCD 10/910 | 92.00 | 910
 - VCD 10/1100 | 111.00 | 1100
 - VCD 10/1220 | 122.00 | 1220
 - VCD 10/1450 | 144.00 | 1450
 - VCD 10/1560 | 156.00 | 1560
 - VCD 10/1740 | 174.00 | 1740
 - VCD 10/1920 | 191.00 | 1920
 - VCD 10/2030 | 203.00 | 2030
 - VCD 10/2260 | 225.00 | 2260

- **17 W/m**
 - **TYPE** | **LENGTH** | **POWER**
 - VCD 17/100 | 5.50 | 100
 - VCD 17/140 | 8.50 | 140
 - VCD 17/180 | 10.00 | 180
 - VCD 17/215 | 13.00 | 215
 - VCD 17/260 | 15.50 | 260
 - VCD 17/305 | 18.00 | 305
 - VCD 17/350 | 20.50 | 350
 - VCD 17/410 | 24.50 | 410
 - VCD 17/480 | 28.00 | 480
 - VCD 17/545 | 32.00 | 545
 - VCD 17/610 | 35.00 | 610
 - VCD 17/745 | 43.00 | 745
 - VCD 17/910 | 54.00 | 910
 - VCD 17/1200 | 70.00 | 1200
 - VCD 17/1430 | 85.00 | 1430
 - VCD 17/1590 | 93.00 | 1590
 - VCD 17/1900 | 110.00 | 1900
 - VCD 17/2030 | 120.00 | 2030
 - VCD 17/2280 | 133.00 | 2280
 - VCD 17/2490 | 147.00 | 2490
 - VCD 17/2660 | 155.00 | 2660
 - VCD 17/2950 | 172.00 | 2950

- **25 W/m**
 - **TYPE** | **LENGTH** | **POWER**
 - VCD 25/120 | 4.50 | 120
 - VCD 25/170 | 7.00 | 170
 - VCD 25/265 | 10.50 | 265
 - VCD 25/320 | 12.50 | 320
 - VCD 25/360 | 15.00 | 365
 - VCD 25/420 | 17.00 | 420
 - VCD 25/505 | 20.00 | 505
 - VCD 25/585 | 23.00 | 585
 - VCD 25/655 | 26.50 | 655
 - VCD 25/725 | 29.50 | 725
 - VCD 25/890 | 36.00 | 890
 - VCD 25/1120 | 44.00 | 1120
 - VCD 25/1450 | 58.00 | 1450
 - VCD 25/1740 | 70.00 | 1740
 - VCD 25/1910 | 77.00 | 1910
 - VCD 25/2270 | 92.00 | 2270
 - VCD 25/2480 | 98.00 | 2480
 - VCD 25/2730 | 110.00 | 2730
 - VCD 25/3030 | 120.00 | 3030
 - VCD 25/3300 | 130.00 | 3300
 - VCD 25/3550 | 142.00 | 3550

- **25 W/m 400V**
 - **TYPE** | **LENGTH** | **POWER**
 - VCD 25/200 400V | 8.00 | 200
 - VCD 25/300 400V | 12.00 | 300
 - VCD 25/470 400V | 18.00 | 470
 - VCD 25/550 400V | 22.00 | 550
 - VCD 25/625 400V | 26.00 | 625
 - VCD 25/720 400V | 30.00 | 720
 - VCD 25/870 400V | 35.00 | 870
 - VCD 25/1020 400V | 40.00 | 1020
 - VCD 25/1170 400V | 45.00 | 1170
 - VCD 25/1280 400V | 50.00 | 1280
 - VCD 25/1570 400V | 62.00 | 1570
 - VCD 25/1930 400V | 77.00 | 1930
 - VCD 25/2300 400V | 100.00 | 2530
 - VCD 25/3070 400V | 120.00 | 3070
 - VCD 25/3350 400V | 135.00 | 3350
 - VCD 25/3970 400V | 160.00 | 3970
 - VCD 25/4280 400V | 172.00 | 4280
 - VCD 25/4820 400V | 190.00 | 4820
 - VCD 25/5260 400V | 210.00 | 5260
 - VCD 25/5600 400V | 225.00 | 5600
 - VCD 25/6150 400V | 250.00 | 6150
ELEKTRA Heating Cables

ELEKTRA TuffTec™ Heating Cables are ready-to-install heating units, dedicated to special applications, which are produced in accordance with EN 60335-1. Heating cable of the length depending on the model, has factory connected cold tail cable. The major use is the snow and ice protection of external surfaces e.g. garage drives, pavements, also roofs, gutters and down pipes.

Exceptional mechanical and thermal resistance allows for the application in spots especially exposed to harsh installation and operation conditions. Very high temporary exposure temperature (240°C) will make it possible to install the TuffTec™ cables even directly in asphalt.

Technical data:

- **Power output:** 30 W/m
- **Power supply:** 230 V, 400 V ~ 50/60 Hz
- **Cable diameter:** ~ 6.8 mm
- **Min. installation temperature:** –25°C
- **Max. working temperature:** +110°C
- **Max. exposure temperature (10 min.):** +240°C
- **Conduit cables:** 1 x 4 m; 3 x 1.5 mm² or 3 x 2.5 mm², rubber outer jacket
- **Type of heating cable:** double-core, single-side power supply
- **Screen of heating cables:** 100% coverage, tinned copper braiding
- **Insulation:** double layer, FEP + HDPE
- **Outer sheath:** HFFR, UV resistant
- **Rated power output tolerance:** +5%, -10%
- **Min. radius of bending cable:** 3.5 D
- **Deformation strength:** > 2000 N
- **Pulling strength:** > 300 N
- **Protection:** IPX7
- **Product certificates:** EAC
- **Certificate of ISO 9001:**
- **Product mark:** CE

This package contains:
- ELEKTRA TuffTec™ heating cable (on a spool).
- Instruction manual.
230V

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TuffTec™ 30/290</td>
<td>9.50</td>
<td>290</td>
</tr>
<tr>
<td>TuffTec™ 30/640</td>
<td>21.00</td>
<td>640</td>
</tr>
<tr>
<td>TuffTec™ 30/980</td>
<td>33.00</td>
<td>980</td>
</tr>
<tr>
<td>TuffTec™ 30/1230</td>
<td>40.00</td>
<td>1230</td>
</tr>
<tr>
<td>TuffTec™ 30/1580</td>
<td>53.00</td>
<td>1580</td>
</tr>
<tr>
<td>TuffTec™ 30/1920</td>
<td>64.00</td>
<td>1920</td>
</tr>
<tr>
<td>TuffTec™ 30/2110</td>
<td>70.00</td>
<td>2110</td>
</tr>
<tr>
<td>TuffTec™ 30/2520</td>
<td>83.00</td>
<td>2520</td>
</tr>
<tr>
<td>TuffTec™ 30/2710</td>
<td>90.00</td>
<td>2710</td>
</tr>
<tr>
<td>TuffTec™ 30/3030</td>
<td>100.00</td>
<td>3030</td>
</tr>
<tr>
<td>TuffTec™ 30/3320</td>
<td>110.00</td>
<td>3320</td>
</tr>
<tr>
<td>TuffTec™ 30/3900</td>
<td>130.00</td>
<td>3900</td>
</tr>
</tbody>
</table>

400V

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TuffTec™ 30/500 400 V</td>
<td>17.00</td>
<td>500</td>
</tr>
<tr>
<td>TuffTec™ 30/1100 400 V</td>
<td>37.00</td>
<td>1100</td>
</tr>
<tr>
<td>TuffTec™ 30/1710 400 V</td>
<td>57.00</td>
<td>1710</td>
</tr>
<tr>
<td>TuffTec™ 30/2120 400 V</td>
<td>70.00</td>
<td>2120</td>
</tr>
<tr>
<td>TuffTec™ 30/2760 400 V</td>
<td>92.00</td>
<td>2760</td>
</tr>
<tr>
<td>TuffTec™ 30/3350 400 V</td>
<td>110.00</td>
<td>3350</td>
</tr>
<tr>
<td>TuffTec™ 30/3660 400 V</td>
<td>122.00</td>
<td>3660</td>
</tr>
<tr>
<td>TuffTec™ 30/4360 400 V</td>
<td>145.00</td>
<td>4360</td>
</tr>
<tr>
<td>TuffTec™ 30/4700 400 V</td>
<td>157.00</td>
<td>4700</td>
</tr>
<tr>
<td>TuffTec™ 30/5230 400 V</td>
<td>175.00</td>
<td>5230</td>
</tr>
<tr>
<td>TuffTec™ 30/5760 400 V</td>
<td>192.00</td>
<td>5760</td>
</tr>
<tr>
<td>TuffTec™ 30/6800 400 V</td>
<td>226.00</td>
<td>6800</td>
</tr>
</tbody>
</table>

> Accessories:

Temperature controllers: ETOG2, ETOR2, ETR2G, ETR2R

Installation accessories: page 49 and 50
ELEKTRA Heating Cables

ELEKTRA VCDR Heating Cables are ready-to-install heating units which are produced in accordance with EN 60335-2-83. Heating cable of the length depending on the model, has factory connected cold tail cable. A system designed for outdoor use to protect roofs, gutters and downpipes against snow and ice.

This package contains:
• ELEKTRA heating cable (on a spool),
• instruction manual.

> Technical data:

- Power output: 20 W/m
- Power supply: 230 V ~ 50/60 Hz
- External dimension of cable: ~ 5 x 7 mm
- Min. installation temperature: –5°C
- Max. working temperature: +95°C
- Conduit cables: 1 x 4 m; 3 x 1.5 mm² or 3 x 2.5 mm², rubber outer jacket
- Type of heating cable: double-core, single-side power supply
- Screen of heating cables: 100% coverage, PET covered aluminum foil, tinned copper braiding
- Insulation: XLPE
- Rated power output tolerance: +5%, -10%
- Min. radius of bending cable: 3.5 D
- Deformation strength: > 1500 N
- Pulling strength: > 300 N
- Protection: IPX7
- Product certificates: EAC, IQNET, PCBC
- Product mark: CE

ELEKTRA Heating Cables
<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCDR 20/190</td>
<td>9.50</td>
<td>190</td>
</tr>
<tr>
<td>VCDR 20/235</td>
<td>12.00</td>
<td>235</td>
</tr>
<tr>
<td>VCDR 20/330</td>
<td>16.50</td>
<td>330</td>
</tr>
<tr>
<td>VCDR 20/380</td>
<td>19.00</td>
<td>380</td>
</tr>
<tr>
<td>VCDR 20/520</td>
<td>26.00</td>
<td>520</td>
</tr>
<tr>
<td>VCDR 20/600</td>
<td>29.00</td>
<td>600</td>
</tr>
<tr>
<td>VCDR 20/800</td>
<td>40.00</td>
<td>800</td>
</tr>
<tr>
<td>VCDR 20/1000</td>
<td>50.00</td>
<td>1000</td>
</tr>
<tr>
<td>VCDR 20/1140</td>
<td>57.00</td>
<td>1140</td>
</tr>
<tr>
<td>VCDR 20/1300</td>
<td>65.00</td>
<td>1300</td>
</tr>
<tr>
<td>VCDR 20/1560</td>
<td>78.00</td>
<td>1560</td>
</tr>
<tr>
<td>VCDR 20/1720</td>
<td>86.00</td>
<td>1720</td>
</tr>
<tr>
<td>VCDR 20/2050</td>
<td>102.00</td>
<td>2050</td>
</tr>
<tr>
<td>VCDR 20/2360</td>
<td>118.00</td>
<td>2360</td>
</tr>
<tr>
<td>VCDR 20/2710</td>
<td>135.00</td>
<td>2710</td>
</tr>
<tr>
<td>VCDR 20/3000</td>
<td>150.00</td>
<td>3000</td>
</tr>
<tr>
<td>VCDR 20/3450</td>
<td>175.00</td>
<td>3450</td>
</tr>
</tbody>
</table>

Other types available on special order.

> Accessories:

Temperature controllers: ETOR2, ETR2R
Installation accessories: page 49
ELEKTRA Heating Cables

ELEKTRA VC Heating Cables are ready-to-install heating units which are produced in accordance with EN 60335-1. Heating cable of the length depending on the model, has factory connected cold tail cable.

Typical use:
- **VC10** - floor heating (installation in mortar), antifrost protection of pipes.
- **VC15** - floor heating (installation in mortar).
- **VC20** - floor heating (installation in mortar), protection against snow and ice of external surfaces e.g. driveways, walkways, ramps, etc.

Technical data:

- **Power output:** 10, 15 or 20 W/m
- **Power supply:** 230 V ~ 50/60 Hz
- **Diameter of cable:** ~ 5 mm
- **Min. installation temperature:** –5°C
- **Max. working temperature:** +95°C
- **Conduit cables:** 2 x 2.5 m; 2 x 1.0 mm², 2 x 1.5 mm² or 2 x 2.5 mm²
- **Type of heating cable:** one-core, double-side power supply
- **Screen of heating cables:** 100% coverage, PET covered aluminum foil, tinned copper braiding
- **Insulation:** XLPE
- **Outer sheath:** heat resistant PVC
- **Rated power output tolerance:** +5%, -10%
- **Min. radius of bending cable:** 3.5 D
- **Deformation strength:** > 1500 N
- **Pulling strength:** > 300 N
- **Protection:** IPX7
- **Product certificates:** EAC
- **Certificate of ISO 9001:** IQNET, PCBC
- **Product mark:** CE

This package contains:
- ELEKTRA heating cable (on a spool),
- instruction manual.
Accessories:

Temperature controllers: OWD5 WiFi, OCD5, OCD4, DIGI2, OTN, OTD, ELR 20, ETOG2, ETR2G, ETV, ETN4, ETI

Installation accessories: page 49 and 50

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC 10/80</td>
<td>7.50</td>
<td>80</td>
</tr>
<tr>
<td>VC 10/105</td>
<td>10.00</td>
<td>105</td>
</tr>
<tr>
<td>VC 10/130</td>
<td>13.00</td>
<td>130</td>
</tr>
<tr>
<td>VC 10/155</td>
<td>15.50</td>
<td>155</td>
</tr>
<tr>
<td>VC 10/190</td>
<td>19.50</td>
<td>190</td>
</tr>
<tr>
<td>VC 10/240</td>
<td>23.50</td>
<td>240</td>
</tr>
<tr>
<td>VC 10/285</td>
<td>28.50</td>
<td>285</td>
</tr>
<tr>
<td>VC 10/330</td>
<td>33.00</td>
<td>330</td>
</tr>
<tr>
<td>VC 10/375</td>
<td>38.00</td>
<td>375</td>
</tr>
<tr>
<td>VC 10/450</td>
<td>45.00</td>
<td>450</td>
</tr>
<tr>
<td>VC 10/515</td>
<td>52.00</td>
<td>515</td>
</tr>
<tr>
<td>VC 10/590</td>
<td>59.00</td>
<td>590</td>
</tr>
<tr>
<td>VC 10/655</td>
<td>65.00</td>
<td>655</td>
</tr>
<tr>
<td>VC 10/805</td>
<td>80.00</td>
<td>805</td>
</tr>
<tr>
<td>VC 10/990</td>
<td>100.00</td>
<td>990</td>
</tr>
<tr>
<td>VC 10/1290</td>
<td>130.00</td>
<td>1290</td>
</tr>
<tr>
<td>VC 10/1560</td>
<td>156.00</td>
<td>1560</td>
</tr>
<tr>
<td>VC 10/1720</td>
<td>172.00</td>
<td>1720</td>
</tr>
<tr>
<td>VC 10/2040</td>
<td>205.00</td>
<td>2040</td>
</tr>
<tr>
<td>VC 10/2210</td>
<td>220.00</td>
<td>2210</td>
</tr>
<tr>
<td>VC 10/2460</td>
<td>246.00</td>
<td>2460</td>
</tr>
<tr>
<td>VC 10/2710</td>
<td>270.00</td>
<td>2710</td>
</tr>
<tr>
<td>VC 10/2850</td>
<td>290.00</td>
<td>2850</td>
</tr>
<tr>
<td>VC 10/3170</td>
<td>320.00</td>
<td>3170</td>
</tr>
</tbody>
</table>

* ELEKTRA VC10 and VC15 available only on special order.
ELEKTRA Heating Cables

ELEKTRA FreezeTec® Heating Cables are ready-to-install heating units. They consist of the ELEKTRA VCD heating cable with integrated thermostat ending in conduit cable with hermetic plug. An antifrost protection system for pipes and other objects which may be damaged by low temperatures.

This package contains:
- ELEKTRA FreezeTec® heating cable,
- 5, 10 or 20 m of self-adhesive installation tape,
- instruction manual.

Technical data:

- **Power output:** 12 W/m
- **Power supply:** 230 V ~ 50/60 Hz
- **External dimension of cable:** ~ 5 x 7 mm
- **Min. installation temperature:** –5°C
- **Max. working temperature:** +70°C
- **Conduit cables:** 1 x 1.5 m; 3 x 0.75 mm²; with the plug
- **Type of heating cable:** double-core, single-side power supply
- **Screen of heating cables:** 100% coverage, PET covered aluminum foil, tinned copper braiding
- **Insulation:** XLPE
- **Outer sheath:** heat resistant PVC
- **Rated power output tolerance:** +5%, -10%
- **Min. radius of bending cable:** 3.5 D
- **Control:** built-in bimetallic thermostat
 - **ON:** +3°C
 - **OFF:** +10°C
- **Deformation strength:** > 1500 N
- **Pulling strength:** > 300 N
- **Protection:** IPX7
- **Product certificates:** EZU, EAC
- **Certificate of ISO 9001:** IQNET, PCBC
- **Product mark:** CE
<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreezeTec® 12/2</td>
<td>2.00</td>
<td>24</td>
</tr>
<tr>
<td>FreezeTec® 12/3</td>
<td>3.00</td>
<td>36</td>
</tr>
<tr>
<td>FreezeTec® 12/5</td>
<td>5.00</td>
<td>60</td>
</tr>
<tr>
<td>FreezeTec® 12/7</td>
<td>7.00</td>
<td>84</td>
</tr>
<tr>
<td>FreezeTec® 12/10</td>
<td>10.00</td>
<td>120</td>
</tr>
<tr>
<td>FreezeTec® 12/15</td>
<td>15.00</td>
<td>180</td>
</tr>
<tr>
<td>FreezeTec® 12/21</td>
<td>21.00</td>
<td>252</td>
</tr>
<tr>
<td>FreezeTec® 12/30</td>
<td>30.00</td>
<td>360</td>
</tr>
<tr>
<td>FreezeTec® 12/42</td>
<td>42.00</td>
<td>504</td>
</tr>
</tbody>
</table>
ELEKTRA Heating Cables

ELEKTRA BET Heating Cables are ready-to-install heating units. They consist of a heating cable terminated at one end with a power supply conductor with a hermetic plug. This system is designed for direct installation on reinforcement, and they are dedicated to construction concrete curing in low temperatures.

This package contains:
- ELEKTRA BET heating cable (when longer on a spool),
- instruction manual.

Technical data:

- **Power output:** 32, 40 W/m
- **Power supply:** 230 V ~ 50/60 Hz
- **Diameter of cable:** ~ 5.0 mm
- **Min. installation temperature:** -5°C
- **Max. working temperature:** +80°C
- **Conduit cables:** 1 x 2.0 m; 3 x 1.0 mm² or 3 x 1.5 mm²; with 16A hermetic plug
- **Type of heating cable:** double-core, single-side power supply
- **Screen of heating cables:** 100% coverage, PET covered aluminum foil, two tinned copper wires
- **Insulation:** XLPE
- **Outer sheath:** PVC
- **Rated power output tolerance:** +5%, -10%
- **Min. radius of bending cable:** 5 D
- **Deformation strength:** > 600 N
- **Pulling strength:** > 120 N
- **Protection:** IPX7
- **Product certificates:** EAC, IQNET, PCBC
- **Product mark:** CE
<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET 32/105</td>
<td>3.30</td>
<td>105</td>
</tr>
<tr>
<td>BET 40/540</td>
<td>13.50</td>
<td>540</td>
</tr>
<tr>
<td>BET 40/1360</td>
<td>34.00</td>
<td>1360</td>
</tr>
<tr>
<td>BET 40/3320</td>
<td>83.00</td>
<td>3320</td>
</tr>
</tbody>
</table>
ELEKTRA Heating Cables

ELEKTRA SelfTec®PRO Self-regulating Heating Cables on a spool. An advanced antifrost protection system for pipes, gutters, downpipes, valves and other objects which may be damaged by low temperatures.

This package contains:
• ELEKTRA SelfTec®PRO heating cable on a spool.

> Technical data:

- Power output (+10°C): 10, 20 or 33 W/m
- Power output (0°C in ice water): 30 W/m (SelfTec®PRO20), 45 W/m (SelfTec®PRO33)
- Power supply: 230 V ~ 50/60 Hz
- External dimension of cable: ~ 7 x 11 mm (10, 20 W/m), ~ 7 x 13 mm (33 W/m)
- Min. installation temperature: -30°C
- Max. working temperature: +65°C
- Max. exposure temperature: +85°C power-off
- Type of heating cable: self-regulating, single-side power supply
- Screen of heating cables: 100% coverage, PET covered aluminum foil, tinned copper braiding
- Conductor: tin-coated copper 2 x 1.1 mm² (10, 20 W/m), 2 x 1.35 mm² (33 W/m)
- Insulation: modified polyolefin
- Outer sheath: UV resistant, halogen free polyolefin
- Min. radius of bending cable: 3.5 D
- Max. cable length per circuit: see next page
- Max. circuit-breaker, C-type: see next page
- Deformation strength: > 1500 N
- Pulling strength: > 300 N
- Product certificates: EAC
- Certificate of ISO 9001: IQNET, PCBC
- Product mark: CE
Temperature controllers:

- **ETOR2, ETR2R, UTR 60-PRO, ETI, TDR 4020-PRO, ETV**

Installation accessories: page 49 and 50

SelfTec PRO

<table>
<thead>
<tr>
<th>TURN-ON TEMPERATURE</th>
<th>SelfTec PRO 10</th>
<th>SelfTec PRO 20</th>
<th>SelfTec PRO 33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10A</td>
<td>16A</td>
<td>20A</td>
</tr>
<tr>
<td>-20°C</td>
<td>85</td>
<td>125</td>
<td>180</td>
</tr>
<tr>
<td>-15°C</td>
<td>100</td>
<td>145</td>
<td>190</td>
</tr>
<tr>
<td>0°C</td>
<td>115</td>
<td>170</td>
<td>205</td>
</tr>
<tr>
<td>+10°C</td>
<td>130</td>
<td>205</td>
<td>–</td>
</tr>
<tr>
<td>0°C in ice water</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Accessories:

- **EC-PRO joint set**
- **S-TWIN-PRO twin splice connection**
- **KF 0404-PRO junction box with M25 gland**
- **ECM2S-PRO joint set with M25 gland**
- **EK-PRO Insulation entry kit for self-regulating heating cables**
- **BT-PRO mounting bracket for the UTR 60-PRO controller**
- **BKF-PRO mounting bracket for the KF 0404-PRO installation box**
- **CL-PRO caution label**

CL-PRO caution label

- **CAUTION! ELECTRIC HEATING**

Temperature controllers: ETOR2, ETR2R, UTR 60-PRO, ETI, TDR 4020-PRO, ETV

Installation accessories: page 49 and 50
ELEKTRA Heating Cables

Self-regulating ELEKTRA SelfTec® PRO TC Heating Cables. An advanced anti frost protection system for objects which may be damaged by low temperatures: central heating and process heat pipelines, also valves during pauses in operation. The cable is high-temperature resistant during normal operation, as well as when switched off.

Technical data:

- **Power output (+10°C):** 30 W/m
- **Power supply:** 230 V ~ 50/60 Hz
- **External dimension of cable:** ~ 6 x 13.5 mm
- **Min. installation temperature:** -50°C
- **Max. working temperature:** +100°C
- **Max. exposure temperature:** +135°C power-off
- **Type of heating cable:** self-regulating, single-side power supply
- **Screen of heating cables:** 100% coverage, PET covered aluminum foil, tinned copper braiding
- **Conductor:** nickel-coated copper 2 x 1.3 mm²
- **Insulation:** XLEVA
- **Outer sheath:** HFFR
- **Min. radius of bending cable:** 35 mm
- **Product certificates:** EAC
- **Max. cable length per circuit:** see next page
- **Max. circuit-breaker, C-type:** see next page
- **Deformation strength:** > 1500 N
- **Pulling strength:** > 300 N
- **Certificate of ISO 9001:** IQNET, PCBC
- **Product mark:** CE

This package contains:

- ELEKTRA SelfTec® PRO TC heating cable on a spool.
Accessories:

Temperature controllers: ETOG2, ETR2G, ETI, UTR 60-PRO, TDR 4020-PRO

Installation accessories: page 49 and 50

<table>
<thead>
<tr>
<th>TURN-ON TEMPERATURE</th>
<th>SelfTec PRO TC 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CIRCUIT-BREAKER, C-TYPE</td>
</tr>
<tr>
<td></td>
<td>16A</td>
</tr>
<tr>
<td>MAX. CABLE LENGTH PER CIRCUIT [m]</td>
<td></td>
</tr>
<tr>
<td>-20°C</td>
<td>69</td>
</tr>
<tr>
<td>-15°C</td>
<td>73</td>
</tr>
<tr>
<td>0°C</td>
<td>80</td>
</tr>
<tr>
<td>+10°C</td>
<td>96</td>
</tr>
<tr>
<td>0°C in ice water</td>
<td>–</td>
</tr>
</tbody>
</table>
ELEKTRA Heating Cables

ELEKTRA SelfTec® Self-regulating Heating Cables are ready-to-install heating units. They consist of heating cable ending in conduit cable with hermetic plug. An antifrost protection system for pipes, gutters, downpipes, valves and other objects which may be damaged by low temperatures.

Technical data:

- **Power output (+10°C):** 16 W/m
- **Power output (0°C in ice water):** 22 W/m
- **Power supply:** 230 V ~ 50/60 Hz
- **External dimension of cable:** ~ 6 x 9 mm
- **Min. installation temperature:** –25°C
- **Max. working temperature:** +65°C
- **Max. exposure temperature:** +65°C
- **Conduit cables:** 1 x 3 m; 3 x 0.75 mm² or 3 x 1.0 mm², with the plug
- **Type of heating cable:** self-regulating, single-side power supply
- **Screen of heating cables:** 100% coverage, PET covered aluminum foil, tinned copper braiding
- **Conductor:** tin-coated copper 2 x 0.6 mm²
- **Insulation:** modified polyolefin
- **Outer sheath:** UV resistant, halogen free polyolefin
- **Min. radius of bending cable:** 3.5 D
- **Deformation strength:** > 1500 N
- **Pulling strength:** > 300 N
- **Protection:** IPX7
- **Product certificates:** EAC
- **Certificate of ISO 9001:** IQNET, PCBC
- **Product mark:** CE

This package contains:
- ELEKTRA SelfTec® heating cable,
- 5 or 10 m of self-adhesive installation tape,
- instruction manual.
Accessories:

Temperature controllers: ETOR2, ETR2R, ETV, ETI

Installation accessories: page 49 and 50

<table>
<thead>
<tr>
<th>TYPE</th>
<th>LENGTH</th>
<th>POWER (+10°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelfTec® 16/1</td>
<td>m</td>
<td>16</td>
</tr>
<tr>
<td>SelfTec® 16/2</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>SelfTec® 16/3</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>SelfTec® 16/5</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>SelfTec® 16/7</td>
<td>7</td>
<td>112</td>
</tr>
<tr>
<td>SelfTec® 16/10</td>
<td>10</td>
<td>160</td>
</tr>
<tr>
<td>SelfTec® 16/15</td>
<td>15</td>
<td>240</td>
</tr>
<tr>
<td>SelfTec® 16/20</td>
<td>20</td>
<td>320</td>
</tr>
<tr>
<td>SelfTec® 16/X</td>
<td>length acc. to order (up. to 80 m)</td>
<td></td>
</tr>
</tbody>
</table>
ELEKTRA Heating Cables

ELEKTRA SelfTec® Self-regulating Heating Cables on a spool. An antifrost protection system for pipes, gutters, downpipes, valves and other objects which may be damaged by low temperatures.

Technical data:

- **Power output (+10°C):** 16 W/m
- **Power output (0°C in ice water):** 22 W/m
- **Power supply:** 230 V ~ 50/60 Hz
- **External dimension of cable:** ~ 6 x 9 mm
- **Min. installation temperature:** −25°C
- **Max. working temperature:** +65°C
- **Max. exposure temperature:** +65°C
- **Type of heating cable:** self-regulating, single-side power supply
- **Screen of heating cables:** 100% coverage, PET covered aluminum foil, tinned copper braiding
- **Conductor:** tin-coated copper 2 x 0.6 mm²
- **Insulation:** modified polyolefin
- **Outer sheath:** UV resistant, halogen free polyolefin
- **Min. radius of bending cable:** 3.5 D
- **Deformation strength:** > 1500 N
- **Pulling strength:** > 300 N
- **Product certificates:** EAC
- **Certificate of ISO 9001:** IQNET, PCBC
- **Product mark:** CE

This package contains:
- ELEKTRA SelfTec® heating cable on a spool.
SelfTec® on a spool

<table>
<thead>
<tr>
<th>TURN-ON TEMPERATURE</th>
<th>10A</th>
<th>16A</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20°C</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>-15°C</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>0°C</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>+10°C</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>0°C in ice water</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

CIRCUIT-BREAKER, C-TYPE

Accessories:

- EC-PRO joint set
- S-TWIN-PRO twin splice connection
- KF 0404-PRO junction box with M25 gland
- ECM25-PRO joint set with M25 gland
- EK-PRO Insulation entry kit for self-regulating heating cables
- BT-PRO mounting bracket for the UTR 60-PRO controller
- BKF-PRO mounting bracket for the KF 0404-PRO installation box
- CL-PRO caution label

Installation accessories: page 49 and 50

Temperature controllers: ETOR2, ETR2R, ETV, ETI

www.elektra.eu
ELEKTRA Heating Cables

ELEKTRA SelfTec®DW Self-regulating Heating Cables. Multi-purpose antifrost protection system, for applications both outside and inside of pipes. Certified for drinking water applications. Available in a double layer polyolefin + LDPE sheath (SelfTec®DW), as well as a single layer fluoropolymer sheath (SelfTec®DW F).

ELEKTRA SelfTec®DW

![Graph of power output vs. temperature for ELEKTRA SelfTec®DW](Image)

This package contains:
- ELEKTRA SelfTec®DW heating cable on a spool.

Technical data:

- **Power output (+10°C):**
 - 10 W/m or 16 W/m
- **Power output (0°C in ice water):**
 - 16 W/m (SelfTec®DW 10),
 - 22 W/m (SelfTec®DW 16)
- **Power supply:**
 - 230 V ~ 50/60 Hz
- **External dimension of cable:**
 - ~ 7 x 10 mm (SelfTec®DW)
 - ~ 6 x 9 mm (SelfTec®DW F)
- **Min. installation temperature:**
 - –25°C
- **Max. working temperature:**
 - +65°C
- **Max. exposure temperature:**
 - +65°C
- **Type of heating cable:**
 - self-regulating, single-side power supply
- **Screen of heating cables:**
 - 100% coverage, PET covered aluminum foil, tinned copper braiding
- **Conductor:**
 - tin-coated copper 0.6 mm²
- **Insulation:**
 - modified polyolefin
- **Outer sheath:**
 - double-layer, halogen free polyolefin + external LDPE, certified for drinking water applications (SelfTec®DW);
 - single layer, fluoropolymer, certified for drinking water applications (SelfTec®DW F)
- **Min. radius of bending cable:**
 - 3.5 D
- **Deformation strength:**
 - > 1500 N
- **Pulling strength:**
 - > 300 N
- **Product certificates:**
 - EAC, FBUZ, PZH (SelfTec®DW) and NSF 61 (SelfTec®DW F) Hygenic Certificates
- **Certificate of ISO 9001:**
 - IQNET, PCBC
- **Product mark:**
 - CE

*) not applicable to SelfTec®DW F
Accessories:

EC-PRO joint set
- Lead-through (1/2", 3/4" & 1" set)
- Temperature controllers: ETV, ETI

CIRCUIT-BREAKER, C-TYPE

<table>
<thead>
<tr>
<th>TURN-ON TEMPERATURE</th>
<th>SelfTec®DW (F) 10 10A</th>
<th>SelfTec®DW F 16 10A</th>
<th>SelfTec®DW (F) 10 16A</th>
<th>SelfTec®DW F 16 16A</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX. CABLE LENGTH PER CIRCUIT [m]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20°C</td>
<td>75</td>
<td>110</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>-15°C</td>
<td>80</td>
<td>115</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>0°C</td>
<td>95</td>
<td>120</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>+10°C</td>
<td>100</td>
<td>125</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>+10°C in water</td>
<td>65</td>
<td>70</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>0°C in ice water</td>
<td>55</td>
<td>65</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>
ELEKTRA Installation Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Tapes TME</td>
<td>TME 10 (10 m), TME 15 (15 m), TME 25 (25 m)</td>
<td>Thickness: ~ 0.8mm, Substance: aluminium</td>
</tr>
<tr>
<td>Installation Tape TMS</td>
<td>TMS 10 (10 m)</td>
<td>Thickness: ~ 1.0 mm, Substance: zinc-coated steel</td>
</tr>
<tr>
<td>Roof trough installation tape (0.5 m)</td>
<td></td>
<td>Width: 25 mm, Substance: aluminium (0.8 mm) with special self-adhesive tape suitable for metal and PVC</td>
</tr>
<tr>
<td>Gutter spacing wire with clips (20 m)</td>
<td></td>
<td>The distance between the holders along the wire: 40 cm Substance: stainless steel and all weather resistant polymer</td>
</tr>
<tr>
<td>Downpipe spacing wire with clips (20 m)</td>
<td></td>
<td>The distance between the holders along the wire: 40 cm Substance: stainless steel and all weather resistant polymer</td>
</tr>
<tr>
<td>Roof trough installation band (1 m)</td>
<td></td>
<td>Substance: all weather resistant polymer</td>
</tr>
<tr>
<td>Gutter holder (25 pieces)</td>
<td></td>
<td>Substance: all weather resistant polymer</td>
</tr>
<tr>
<td>Downpipe spacing clip (25 pieces)</td>
<td></td>
<td>Substance: all weather resistant polymer</td>
</tr>
<tr>
<td>Roof edge installation holder (25 pieces)</td>
<td></td>
<td>Substance: ZnTi or Cu</td>
</tr>
<tr>
<td>Flexible cable support (25 x 250mm, 2 pieces)</td>
<td></td>
<td>Substance: stainless steel</td>
</tr>
<tr>
<td>Downpipe spacing wire support bar (Ø 6 x 325mm)</td>
<td></td>
<td>Substance: stainless steel</td>
</tr>
</tbody>
</table>
Underfloor heating installation monitor
Monitoring device for detection of damages occurring during heating mats and cables' installation

Self-adhesive installation tape
(5, 10 or 20 m)

Self-adhesive aluminium foil
(5 m, 10 m, 25 m, 45 m) Width: 50 mm

Tape-PRO
Self-adhesive aluminium foil of increased mechanical durability
(50 m) Width: 50 mm
ELEKTRA Portable Heating Mats

ELEKTRA MMV heating mats are portable, specialized heating devices dedicated for instant use which are produced in accordance with EN 60335-1. Composed of a constant resistant heating cable and insulation layer installed inside PVC mat reinforced by polyester mesh. The mats are designed for universal applications such as defrosting of the ground, defrosting of haylage in prisms or hayballs or retrieving flexibility of cables on drums to allow unrolling in winter season.

Technical data:

- Power output: 300 W/m²
- Total output power: 1000 W
- Power supply: 230 V, ~ 50/60 Hz
- Length x width x thickness: ~ 3000 x 1000 x 20 mm
- Min. installation temperature: −30°C
- Max. working temperature: +65°C, +80°C
- Overheating protection: 1 x 3 m; 3 x 1.5 mm² with hermetic plug IP44
- Conduit cables: PVC mat reinforced with polyester mesh
- Mat fabric: 10 mm
- Thermal insulation: +5%, -10%
- Rated power output tolerance: IP67
- Protection: IQNET, PCBC
- Certificate of ISO 9001:
- Product mark: CE
ELEKTRA MMR heating mats are portable heating devices manufactured in accordance with EN 60335-1 standard. Their construction is based on a constant-resistance heating cable embedded within a layer of a vulcanized elastomer, which lends the mat exceptional resistance against abrasion as well as mechanical durability. The mats are dedicated to applications in locations where the danger of icing or snow deposition exists, e.g. in front of entrances to buildings, or – alternatively – under unheated workstations, thus ensuring comfort and safety of work.

Technical data:

- **Power output:** 340 W/m²
- **Total output power:** 300 W
- **Power supply:** 230 V, ~50/60 Hz
- **Length x width x thickness:** ~1180 x 760 x 10 mm
- **Min. installation temperature:** -35°C
- **Max. working temperature:** +80°C
- **Conduit cables:** 1 x 3 m; 3 x 1.5 mm², with hermetic plug IP44
- **Mat fabric:** Elastomer
- **Rated power output tolerance:** +5%, -10%
- **Protection:** IP67
- **Certificate of ISO 9001:** IQNET, PCBC
- **Product mark:** CE

* Available soon.
ELEKTRA Towel Dryers

ELEKTRA Towel Dryers are adjusted to dry and warm clothes and towels, and to heat up spaces. They are produced in accordance with EN 60335-2-43:2002. The Dryer is composed of ladder shaped metal tubes with heating cable installed inside the tubes.

> Technical data:

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>95 ÷ 230 W</td>
</tr>
<tr>
<td>Power supply</td>
<td>230 V ~ 50/60 Hz</td>
</tr>
<tr>
<td>Tubes diameter</td>
<td>25 mm</td>
</tr>
<tr>
<td>Max. working temperature (constant)</td>
<td>60°C</td>
</tr>
<tr>
<td>Conduit cables</td>
<td>1 x 2 m, 3 x 1.5 mm²,</td>
</tr>
<tr>
<td></td>
<td>end of plug (CX xxx) or connection</td>
</tr>
<tr>
<td></td>
<td>through the bracket without plug (CX xxxN)</td>
</tr>
<tr>
<td>Type of heating cable:</td>
<td>one-core silicon insulated</td>
</tr>
<tr>
<td>Protection</td>
<td>IP44</td>
</tr>
<tr>
<td>Certificate of ISO 9001:</td>
<td>PCBC, IQNET</td>
</tr>
<tr>
<td>Product mark</td>
<td>CE</td>
</tr>
</tbody>
</table>

This package contains:
- ELEKTRA dryer,
- installation set,
- instruction manual.
Standard version. Power lead with plug.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>POWER</th>
<th>COLOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>width x height (mm)</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>CX 700</td>
<td>527 x 697</td>
<td>130</td>
<td>White</td>
</tr>
<tr>
<td>CX 700r</td>
<td>527 x 697</td>
<td>130</td>
<td>RAL</td>
</tr>
<tr>
<td>CX 700c</td>
<td>527 x 697</td>
<td>95</td>
<td>Chromium</td>
</tr>
<tr>
<td>CX 800</td>
<td>527 x 997</td>
<td>175</td>
<td>White</td>
</tr>
<tr>
<td>CX 800r</td>
<td>527 x 997</td>
<td>175</td>
<td>RAL</td>
</tr>
<tr>
<td>CX 800c</td>
<td>527 x 997</td>
<td>175</td>
<td>Chromium</td>
</tr>
<tr>
<td>CX 900</td>
<td>527 x 1227</td>
<td>230</td>
<td>White</td>
</tr>
<tr>
<td>CX 900r</td>
<td>527 x 1227</td>
<td>230</td>
<td>RAL</td>
</tr>
<tr>
<td>CX 900c</td>
<td>527 x 1227</td>
<td>230</td>
<td>Chromium</td>
</tr>
</tbody>
</table>

Special version. Power lead without plug. Connection through the bracket.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIMENSIONS</th>
<th>POWER</th>
<th>COLOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>width x height (mm)</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>CX 700N</td>
<td>527 x 697</td>
<td>130</td>
<td>White</td>
</tr>
<tr>
<td>CX 700Nr</td>
<td>527 x 697</td>
<td>130</td>
<td>RAL</td>
</tr>
<tr>
<td>CX 700Nc</td>
<td>527 x 697</td>
<td>95</td>
<td>Chromium</td>
</tr>
<tr>
<td>CX 800N</td>
<td>527 x 997</td>
<td>175</td>
<td>White</td>
</tr>
<tr>
<td>CX 800Nr</td>
<td>527 x 997</td>
<td>175</td>
<td>RAL</td>
</tr>
<tr>
<td>CX 800Nc</td>
<td>527 x 997</td>
<td>175</td>
<td>Chromium</td>
</tr>
<tr>
<td>CX 900N</td>
<td>527 x 1227</td>
<td>230</td>
<td>White</td>
</tr>
<tr>
<td>CX 900Nr</td>
<td>527 x 1227</td>
<td>230</td>
<td>RAL</td>
</tr>
<tr>
<td>CX 900Nc</td>
<td>527 x 1227</td>
<td>230</td>
<td>Chromium</td>
</tr>
</tbody>
</table>
ELEKTRA Temperature Controllers

The electronic 6-event temperature controller ELEKTRA OWD5 WiFi is designed for heating systems, especially electric floor heating. Enriched with the WiFi functionality enabling the users to have each controller individually operated, or combine them in one or more jointly controlled heating zones. Produced in accordance with EN 60730-2-9. The set consists of the controller with a built-in air sensor and a thin floor sensor. Possible configuration of 3 temperature measurement methods: via the air sensor, floor sensor or air and floor (limiting) sensor. Compatible with most commercially available floor sensors. Equipped with a 2-inch colour touch-screen.

Possible installation in the common frame:

<table>
<thead>
<tr>
<th>PRODUCER</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busch-Jaeger</td>
<td>Reflex SI</td>
</tr>
<tr>
<td>Merten</td>
<td>Atelier & M1</td>
</tr>
<tr>
<td>Eljo</td>
<td>Trend</td>
</tr>
</tbody>
</table>

This package contains:
- controller OWD5 with built-in air temperature sensor,
- a thin floor temperature sensor with 3 m tail (ETF-144/99T),
- instruction manual (with a link to programming instruction).

Technical data:

- Power supply: 100-240 VAC ~ 50/60 Hz
- Max. load: 16A, 230 V ~ 50/60 Hz
- Installation: flush mounting
- Built-in switch: 2-pole, 16A
- Clock functions: 6 programmable events for each day
- Comfort temperature range: +5°C ÷ +40°C for each event
- Economical temperature range: +5°C ÷ +40°C for each event
- Protection: IP21
- Dimensions (H x W x D): 82 x 82 x 40 mm
- Display: 176 x 220 pixel (TFT)
- Wireless control: WiFi (cloud)
- Applications: Android, iOS
- Certificates: VDE, BEAB
- Product mark: CE
This package contains:
Type OCD5-1999
• controller OCD5 with built-in air temperature sensor,
• a thin floor temperature sensor with 3 m tail (ETF-144/99T),
• instruction manual (with a link to programming instruction).

ELEKTRA Temperature Controllers

The Electronic 6-event Temperature Controller ELEKTRA OCD5 is designed for heating systems, especially for electric floor heating. Produced in accordance with EN 60730-2-9. It consists of controller with built-in air sensor and a thin floor sensor. Possible configuration of 3 temperature measurement methods: air sensor, floor sensor or air and limitation floor sensor. Compatible with most of floor sensors in the market. Equipped with a 2-inch colour touch-screen.

The calendar installed in the controller enables entering the date of the beginning and ending of your holiday/absence - in this time the heating will be off, or only the required min. set temperature will be maintained. Application of the QR code enables fast preview of the controller’s settings in your smartphone.

Technical data:

- Power supply: 230 V ~ 50/60 Hz
- Max. load: 16A, 230 V ~ 50/60 Hz
- Installation: flush mounting
- Built-in switch: 2-pole, 16A
- Clock functions: 6 programmable events for each day
- Comfort temperature range: +5°C ~ +40°C for each event
- Economical temperature range: +5°C ~ +40°C for each event
- Limitation floor sensor:
 - Min.: +5°C ~ +25°C
 - Max.: +10°C ~ +40°C
- Manual work mode:
 - temperature range: +5°C ~ +40°C
 - work time: to the next event or to the cancellation
- Difference/Hysteresis: 0.4K
- Protection: IP21
- Work signalization: display function
- Dimensions (H x W x D): 82 x 82 x 40 mm
- Display: 2", 176 x 220 pixel TFT
- Certificates: VDE, BEAB
- Product mark: CE

Possible installation in the common frame:

<table>
<thead>
<tr>
<th>PRODUCER</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busch-Jaeger</td>
<td>Reflex SI</td>
</tr>
<tr>
<td>Merten</td>
<td>Atelier & M1</td>
</tr>
<tr>
<td>Eljo</td>
<td>Trend</td>
</tr>
</tbody>
</table>
ELEKTRA Temperature Controllers

The Electronic 6-event Temperature Controller ELEKTRA OCD4 is designed for heating systems, especially for electric floor heating. Produced in accordance with EN 60730-2-9. It consists of controller with built-in air sensor and a thin floor sensor. Possible configuration of 3 temperature measurement methods through: air sensor, floor sensor or air and limitation floor sensor. Compatible with most of floor sensors in the market. New advanced Dot Matrix multi-language display.

This package contains:
Type OCD4-1999
• controller OCD4 with built-in air temperature sensor,
• a thin floor temperature sensor with 3 m tail (ETF-144/99T),
• programming instruction,
• instruction manual.

Technical data:

Power supply:	230 V ~ 50/60 Hz
Max. load:	16A, 230 V ~ 50/60 Hz
Installation:	flush mounting
Built-in switch:	2-pole, 16A
Clock functions:	6 programmable events for each day
Comfort temperature range:	0°C ~ +40°C for each event
Economical temperature range:	0°C ~ +40°C for each event
Limitation floor sensor:	0°C ~ +40°C
Manual work mode:	0°C ~ +40°C
temperature range:	0°C ~ +40°C
work time:	to the next event or to the cancellation
Difference/Hysteresis:	0.4K
Protection:	IP 21
Work signalization:	display function
Dimensions (H x W x D):	84 x 84 x 40 mm
Display:	100 x 64 pixel STN with backlight
Display dimensions (H x W):	25 x 37 mm
Certificates:	EAC, VDE, BEAB, NEMKO
Product mark:	CE

Possible installation in the common frame:

<table>
<thead>
<tr>
<th>PRODUCER</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busch-Jaeger</td>
<td>Reflex SI</td>
</tr>
<tr>
<td>Merten</td>
<td>Atelier & M1</td>
</tr>
<tr>
<td>Eljo</td>
<td>Trend</td>
</tr>
</tbody>
</table>

~ 50/60 Hz
ELEKTRA Temperature Controllers

The Electronic 6-event Temperature Controller ELEKTRA ELR 20 with LCD display is designed for heating systems, especially for electric floor heating. Produced in accordance with EN 60730-1 and EN 60730-2-9. Possible configuration of 3 temperature measurement methods through: air sensor, floor sensor or air and limitation floor sensor. Large LCD display ensures users’ friendly communication.

Power supply: 230 V ~ 50/60 Hz
Max. load: 16A, 230 V 50/60 Hz
Low energy consumption in the standby mode: <1W
Installation: flush mounting
Conduit cables connected to one clamp: max. 2 conduit cables 1.5 mm² or 1 conduit cable 2 mm²
Clock functions: 6 programmable events for each day
Comfort temperature range: +5°C ÷ +90°C for each event
Economical temperature range: +5°C ÷ +90°C for each event
Limitation floor sensor: +16°C ÷ +60°C
Frost protection temperature control range: +5°C ÷ +10°C
Manual work mode: temperature range: +5°C ÷ +90°C
work time: until cancelled
Difference/Hysteresis: adjustable 0.5°C ÷ 10°C
Protection: IP 20
Dimensions (H x W x D): 90 x 86 x 45 mm
Display: 46 x 55 mm (LCD)
Product mark: CE

This package contains:

Type ELR 20
- ELR 20 controller with built-in air temperature sensor,
- floor temperature sensor with 3 m tail,
- manual and programming instruction.
The Electronic Temperature Controller ELEKTRA DIGI2 is designed for heating systems, especially for electric floor heating. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of controller and sensor appropriate for the application.

This package contains:

Type DIGI2
- controller DIGI2 with built-in air temperature sensor,
- two batteries AA (R6),
- accessories to install,
- instruction manual.

Type DIGI2p
- controller DIGI2,
- floor temperature sensor with 2.5 m tail,
- two batteries AA (R6),
- accessories to install,
- instruction manual.

Technical data:

- **Power supply:** 2 alkaline batteries AA (R6)
- **Max. load:** 8A, 230 V ~ 50/60 Hz
- **Installation:** surface mounting
- **Clock functions:** 4 programs
- **Comfort temperature range:** +5°C ~ +30°C
- **Economical temperature range:** +5°C ~ +30°C
- **Manual work mode:**
 - temperature range: +5°C ~ +30°C
 - work time: 1 ÷ 99 days
- **Difference/Hysteresis:** 0.3K
- **Protection:** IP 30
- **Work signalization:** display function
- **Dimensions (H x W x D):** 82 x 120 x 30 mm
- **Display dimensions (H x D):** 23 x 70 mm
- **Product mark:** CE

ELEKTRA Temperature Controllers

The Electronic Ultra-Thin Temperature Controller ELEKTRA OTD2 is designed for heating systems, especially for electric floor heating. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of controller with built-in air sensor and floor sensor. Possible configuration of 3 temperature measurement methods through: air sensor, floor sensor or air and limitation floor sensor.

This package contains:

Type OTD2-1999
• controller OTD2 with built-in air sensor,
• floor temperature sensor with 3 m tail (ETF-144/99),
• instruction manual.

Electronic OTD2
ETF-144/99

Possible installation in the common frame:

PRODUCER
Busch-Jaeger
Merten
Eljo

PRODUCT
Reflex SI
Atelier & M1
Trend

Technical data:

- Power supply: 230 V ~ 50/60 Hz
- Max. load: 16A, 230 V ~ 50/60 Hz
- Installation: flush mounting
- Built-in switch: 2-pole, 16A
- Temperature range: 0°C ÷ +40°C
- Limitation floor sensor:
 - Min: +5°C ÷ +30°C
 - Max: +15°C ÷ +55°C
- Setback temperature: +2°C ÷ +8°C
- Control of setback temperature: supply signal 230 V ~ 50/60 Hz
- Difference/Hysteresis: 0.4K
- Protection: IP 21
- Work signalization: LED
- Dimensions (H x W x D): 84 x 84 x 40 mm
- Certificates: EAC
- Product mark: CE

~ 50/60 Hz
~ 50/60 Hz
~ 50/60 Hz
ELEKTRA Temperature Controllers

The Electronic Temperature Controller ELEKTRA OTN is designed for heating systems, especially for electric floor heating. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of controller and floor sensor.

Technical data:

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>230 V ~ 50/60 Hz</td>
</tr>
<tr>
<td>Max. load</td>
<td>16A, 230 V ~ 50/60 Hz</td>
</tr>
<tr>
<td>Installation</td>
<td>flush mounting</td>
</tr>
<tr>
<td>Built-in switch</td>
<td>1-pole, 16A</td>
</tr>
<tr>
<td>Temperature range</td>
<td>+5°C ÷ +40°C</td>
</tr>
<tr>
<td>Setback temperature</td>
<td>about 5°C</td>
</tr>
<tr>
<td>Control of setback temperature</td>
<td>supply signal 230 V ~ 50/60 Hz</td>
</tr>
<tr>
<td>Difference/Hysteresis</td>
<td>0.4K</td>
</tr>
<tr>
<td>Protection</td>
<td>IP 20</td>
</tr>
<tr>
<td>Work signalization</td>
<td>LED</td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>80 x 80 x 50 mm</td>
</tr>
<tr>
<td>Certificates</td>
<td>EAC</td>
</tr>
<tr>
<td>Product mark</td>
<td>CE</td>
</tr>
</tbody>
</table>

Possible installation in the common frame:

<table>
<thead>
<tr>
<th>PRODUCER</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busch-Jaeger</td>
<td>Reflex S1</td>
</tr>
<tr>
<td>Merten</td>
<td>Atelier & M1</td>
</tr>
<tr>
<td>Eljo</td>
<td>Trend</td>
</tr>
</tbody>
</table>
The Electronic Temperature Controller ELEKTRA ETOG2 is designed especially for snow and ice protection electric heating systems. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of a controller and a ground humidity detector with an integrated air temperature sensor. ETOG2 controls up to 2 zones or a single zone by means of 2 sensors. It is a solution even for large applications, e.g. car parks or driveways.

ETOG2 may also control 2 independent areas, e.g. a driveway and gutters (combination of ETOG-56T, ETOR-55 and ETF-744 sensors).

The controller features the possibility to cooperate analogously with a BMS system via a relay informing about the alarm status and two pairs of connectors enabling manual switch on or stand-by of the heating system from the BMS.

Technical data:

ETO2-4550
- Power supply: 115/240 V ~ 50/60 Hz
- Built-in transformer: 24VAC, 6VA
- Max. load: 3 x 16A, 230 V ~ 50/60 Hz (potential free relays)
- Installation: DIN-rail or surface mounting
- Temperature range: -20°C ÷ +50°C
- Difference/Hysteresis: 0.3K
- Controller cover protection (surface mounting): IP 21
- Work signalization: LED
- Temperature sensor calibration: potentiometer
- Working temperature: 0°C ÷ +50°C
- Dimensions (H x W x D): 90 x 156 x 45 mm
- Modules: 9
- Certificates: EAC
- Product mark: CE

ETOG-56T
- Installation: in the ground
- Cover protection: IP 68
- Dimensions (H x D): 30 Ø 60 mm
- Working temperature: -50°C ÷ +70°C
- Measurement: humidity and ground temperature
ELEKTRA Temperature Controllers

The Electronic Temperature Controller ELEKTRA ETOR2 is designed for snow and ice protection electric heating systems. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of a controller, gutter humidity and air temperature sensors.

ETOR2 controls up to 2 zones or a single zone by means of 2 sensors. It is a solution even for large applications, e.g. roof troughs and roofs.

ETOR2 may also control 2 independent areas, e.g. a driveway and gutters (combination of ETOG-56T, ETOR-55 and ETF-744 sensors).

The controller features the possibility to cooperate analogously with a BMS system via a relay informing about the alarm status and two pairs of connectors enabling manual switch on or stand-by of the heating system from the BMS.

Technical data:

ETO2-4550
- Power supply: 115/240 V ~ 50/60 Hz
- Built-in transformer: 24 VAC, 6 VA
- Max. load: 3 x 16A, 230 V ~ 50/60 Hz (potential free relays)
- Installation: DIN-rail or surface mounting
- Temperature range: -20°C ÷ +50°C
- Difference/Hysteresis: 0.3K
- Controller cover protection (surface mounting): IP 21
- Work signalization: LED
- Temperature sensor calibration: potentiometer
- Working temperature: 0°C ÷ +50°C
- Dimensions (H x W x D): 90 x 156 x 45 mm
- Certificates: EAC
- Product mark: CE

ETF-744/99
- Installation: surface mounting, outdoor
- Protection: IP 54
- Dimensions (H x W x D): 85 x 50 x 35 mm
- Working temperature: -50°C ÷ +70°C
- Measurement: air temperature

ETOR-55
- Installation: inside the gutter
- Protection: IP 68
- Dimensions (H x W x D): 107 x 26 x 15 mm
- Working temperature: -50°C ÷ +70°C
- Measurement: humidity

This package contains:
- **Type ETOR2**
 - ETO2-4550 controller,
 - humidity detector (ETOR-55),
 - air temperature sensor in the hermetic cover (ETF-744/99),
 - cover for surface mounting,
 - accessories for installation,
 - instruction manual.
The Electronic Temperature Controller ELEKTRA ETR2G is designed specifically for snow and ice protection electric heating systems. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of controller and a ground humidity detector with an integrated air temperature sensor.

This package contains:

Type ETR2G
- ETR2-1550 controller,
- humidity detector with an integral temperature sensor (ETOG-56T),
- ETOK-T installation tube for ETOG-56T sensor,
- instruction manual.

Technical data:

ETR2-1550
Power supply: 230 V ~ 50/60 Hz
Max. load: 16A, 230 V ~ 50/60 Hz (potential free relays)
Installation: DIN-rail
Temperature range: 0°C ÷ +10°C
Difference/Hysteresis: 0.3K
Temperature controller protection: IP 20
Work signalization:
- LED ON (green): power on
- LED RELAY (red): output on
- LED TEMP (red): outdoor temperature below setpoint
- LED MOIST (red): moisture detected
Timer:
Switch-off delay adjustable 0-6 hours
Working temperature: -20°C ÷ +50°C
Dimensions (H x W x D): 86 x 52 x 59 mm
Modules: 3
Certificates: EAC
Product mark: CE

ETOG-56T
Installation: in the ground
Cover protection: IP 68
Dimensions (H x D): 30 Ø 60 mm
Working temperature: -50°C ÷ +70°C
Measurement: humidity and ground temperature
ELEKTRA Temperature Controllers

The Electronic Temperature Controller ELEKTRA ETR2R is designed specifically for snow and ice protection electric heating systems. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of controller, gutter humidity and air temperature sensors.

This package contains:
Type ETR2R
- ETR2-1550 controller,
- humidity detector (ETOR-55),
- air temperature sensor in the hermetic cover (ETF-744/99),
- instruction manual.

Technical data:

ETR2-1550
- Power supply: 230 V ~ 50/60 Hz
- Max. load: 16A, 230 V ~ 50/60 Hz (potential free relays)
- Installation: DIN-rail
- Temperature range: 0°C ~ +10°C
- Difference/Hysteresis: 0.3K
- Temperature controller protection: IP 20
- Work signalization:
 - LED ON (green): power on
 - LED RELAY (red): output on
 - LED TEMP (red): outdoor temperature below setpoint
 - LED MOIST (red): moisture detected
- Timer:
 - Switch-off delay adjustable 0-6 hours
- Working temperature: -20°C ÷ +50°C
- Dimensions (H x W x D): 86 x 52 x 59 mm
- Modules: 3
- Certificates: EAC
- Product mark: CE

ETF-744/99
- Installation: surface mounting, outdoor
- Protection: IP 54
- Dimensions (H x W x D): 85 x 50 x 35 mm
- Working temperature: -50°C ÷ +70°C
- Measurement: air temperature

ETOR-55
- Installation: inside the gutter
- Protection: IP 68
- Dimensions (H x W x D): 107 x 26 x 15 mm
- Working temperature: -50°C ÷ +70°C
- Measurement: humidity
ELEKTRA Temperature Controllers

The ELEKTRA UTR 60-PRO Electronic Temperature Controller is designed for pipe heating systems, including anti-frost protection and maintaining the desired pipeline temperature. Produced in accordance with the EN 60730-1 and EN 60730-2-9 standards. It consists of the controller and a temperature sensor to be mounted on a pipe surface.

This package contains:
UTR 60-PRO
• UTR 60-PRO controller,
• temperature sensor with 1.5 m cable (F 892 002),
• instruction manual.

F 892 002

> Technical data:

UTR 60-PRO
- Power supply: 230 V ~ 50/60 Hz
- Max. load: 16A, 230 V ~ 50/60 Hz
- Installation: surface mounting / installation board
- Temperature range: 0°C ÷ +60°C
- Setback temperature: about 5°C
- Hysteresis: 1 ÷ 10K
- Controller protection: IP 65
- Signalization: LED
- Operation temperature: -20°C ÷ +50°C
- Dimensions (H x W x D): 120 x 122 x 56 mm
- Certificates: EAC
- Product mark: CE

F 892 002
- Installation: on pipe
- Sensor protection: IP 67
- Working temperature: -40°C ÷ +120°C
ELEKTRA Temperature Controllers

The ELEKTRA TDR 4020-PRO Electronic Temperature Controller is designed for pipe heating systems, including anti-frost protection and maintaining the desired pipeline temperature. The temperature controller has got two freely configurable relays, and the TTL port which give the optional possibility to connect the BusAdapter module with the RS-485 bus or the Unicard with the USB port. The controller cooperates with BMS systems via ModBus or Televis protocols, or analogously via a relay operating in the alarm mode. Produced in accordance with the EN 60730-1 and EN 60730-2-9 standards. It consists of the controller and a temperature sensor to be mounted on a pipe surface.

Technical data:

<table>
<thead>
<tr>
<th>TDR 4020-PRO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply:</td>
<td>100–240 V ~ 50/60 Hz</td>
<td></td>
</tr>
<tr>
<td>Max. load:</td>
<td>2 x 8A, 230 V ~ 50/60 Hz (potential free relays)</td>
<td></td>
</tr>
<tr>
<td>Installation:</td>
<td>DIN-rail</td>
<td></td>
</tr>
<tr>
<td>Temperature range:</td>
<td>-200°C ÷ +800°C</td>
<td></td>
</tr>
<tr>
<td>Hysteresis:</td>
<td>0.1 … 30K</td>
<td></td>
</tr>
<tr>
<td>Controller protection:</td>
<td>IP 20</td>
<td></td>
</tr>
<tr>
<td>Work signalization:</td>
<td>LED</td>
<td></td>
</tr>
<tr>
<td>Working temperature:</td>
<td>-5°C ÷ +55°C</td>
<td></td>
</tr>
<tr>
<td>Dimensions (H x W x D):</td>
<td>85 x 70 x 61 mm</td>
<td></td>
</tr>
<tr>
<td>Modules:</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Product mark:</td>
<td>CE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>886030081500</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting:</td>
<td>on pipe</td>
<td></td>
</tr>
<tr>
<td>Sensor protection:</td>
<td>IP 67</td>
<td></td>
</tr>
<tr>
<td>Working temperature:</td>
<td>-50°C ÷ +110°C</td>
<td></td>
</tr>
</tbody>
</table>

This package contains:

- **Type TDR 4020-PRO**
- TDR 4020-PRO controller,
- temperature sensor (886030081500),
- instruction manual.
The Electronic Temperature Controller ELEKTRA ETV is designed for heating systems, especially for floor and pipe electric heating. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of the controller and an appropriate sensor dependent on the application.

This package contains:

Type ETV-1991
- ETV-1990 controller,
- temperature sensor with 3 m tail (ETF-144/99),
- instruction manual.

Type ETV-1999
- ETV-1990 controller,
- indoor air temperature sensor (ETF-944/99) or (optional) air temperature sensor in the hermetic cover (ETF-744/99),
- instruction manual.

Technical data:

ETV-1990
- Power supply: 230 V ~ 50/60 Hz
- Max. load: 16 A, 230 V ~ 50/60 Hz
- Installation: DIN-rail
- Temperature range: 0°C ÷ +40°C
- Setback temperature: about 5°C
- Control of setback temperature: supply signal 230 V ~ 50/60 Hz
- Difference/Hysteresis: 0.4K
- Temperature controller protection: IP 20
- Signalization: LED
- Working temperature: 0°C ÷ +50°C
- Dimensions (H x W x D): 86 x 36 x 58 mm
- Modules: 2
- Certificates: EAC
- Product mark: CE

ETF-744/99
- Installation: surface mounting, outdoor
- Protection: IP 54
- Dimensions (H x W x D): 85 x 50 x 35 mm
- Working temperature: -50°C ÷ +70°C

ETF-144/99
- Installation: floor or on pipe
- Protection: IP 67
- Working temperature: -20°C ÷ +70°C

ETF-944/99
- Installation: surface mounting, indoor
- Protection: IP 20
- Dimensions (H x W x D): 80 x 80 x 16 mm
- Working temperature: -20°C ÷ +70°C
The ELEKTRA ETN4 electronic temperature controller is suitable for the purposes of electric heating systems' control, anti-frost protection of pipes, protection of buildings' foundations and control in cooling applications. The controller is manufactured in compliance with the EN 60730-1 and EN 60730-2-9 technical standards. One of the features of ETN4 is significantly wide range of set temperature: between -19.5°C and +70°C. Large backlit display emphasises current operating parameters, while three buttons enable easy menu navigation.

Technical data:

ETN4-1999
- Power supply: 230 V ~ 50/60 Hz
- Max. load: 16A, 230 V ~ 50/60 Hz
- Installation: DIN-rail
- Built-in switch: 2-pole, 16A
- Control principle: ON/OFF or PWM/PI
- Temperature range: -19.5°C ÷ +70°C
- Limit sensor control temperature range:
 - Min.: -19.5/+70°C
 - Max.: -19.5/+70°C
- Temperature setback or increase:
 - with connected sensor: -19.5/+30°C
 - no connected sensor: 0-100%
- Frost protection:
 - with connected sensor: 0-10°C
 - no connected sensor: 0-100%
- Control hysteresis: 0.3-10K
- Protection: IP 20
- Frost protection and temperature increase or setback: with the voltage impulse 230 V / ~ 50/60 Hz
- Working temperature:
 - -20 °C ÷ +55°C
- Dimensions (H. x W. x D.): 86 x 52.5 x 58 mm
- Modules: 3
- Certificates: EAC, VDE
- Product mark: CE

ETF-144/99T
- Installation: in-floor or on-pipe
- Protection: IP 67
- Working temperature: -20°C ÷ +70°C

ETF-744/99
- Installation: surface mounting
- Protection: IP 54
- Dimensions (H. x W. x D.): 85 x 50 x 35 mm
- Working temperature: -50°C ÷ +70°C

ETF-944/99
- Installation: indoor, surface mounting
- Protection: IP 20
- Dimensions (H. x W. x D.): 80 x 80 x 16 mm
- Working temperature: -20°C ÷ +70°C

ETF-622
- Installation: on-pipe
- Protection: IP 44
- Working temperature: -40°C ÷ +120°C

This package contains:
- Type ETN4-1999
 - ETN4 controller,
 - thin floor temperature sensor with 3m tail (ETF-144/99T),
 - instruction manual,
 - programming instruction.

Option:
Depending on the application, the controller can service one or two sensors of the below:
- ETF-144/99T,
- ETF-744,
- ETF-944,
- ETF-622.

ETF-144/99T

ETF-744/99

ETF-944/99

ETF-622
ELEKTRA Temperature Controllers

The Electronic Temperature Controller ELEKTRA ETI is designed for heating and cooling systems, especially basement protection (coolers) and pipelines. Produced in accordance with EN 60730-1 and EN 60730-2-9. It consists of the controller and an appropriate sensor dependent on the application.

This package contains:

Type ETI-1522
- ETI-1551 controller,
- temperature sensor with special installation opening (ETF-622),
- instruction manual.

Type ETI-1544
- ETI-1551 controller,
- temperature sensor with 3m tail (ETF-144/99),
- instruction manual.

Technical data:

ETI-1551
- Power supply: 230 V ~ 50/60 Hz
- Max. load: 10A, 230 V ~ 50/60 Hz
- Installation: DIN-rail
- Built-in switch: 2-pole, 16A
- Temperature range: -10°C ÷ +50°C
- Difference/Hysteresis: 0.3 ÷ 6K
- Controller protection: IP 20
- Signalization: LED
- Working temperature: -20°C ÷ +50°C
- Dimensions (H x W x D): 86 x 36 x 58 mm
- Modules: 3
- Certificates: EAC
- Product mark: CE

ETF-622
- Installation: on pipe
- Protection: IP 44
- Working temperature: -40°C ÷ +120°C

ETF-144/99
- Installation: floor or on pipe
- Protection: IP 67
- Working temperature: -20°C ÷ +70°C